
Experimental Performance Evaluation of ATP in a
Wireless Mesh Network

Xingang Zhang, Randy Buck, Daniel Zappala
Computer Science Department

Brigham Young University
Provo, UT 84602, U.S.A.

zhang.xingang@byu.edu, sutekistudent@gmail.com, zappala@cs.byu.edu

Abstract—It is well known that TCP performs poorly in
wireless mesh networks. There has been intensive research in
this area, but most work uses simulation as the only evaluation
method; however, it is not clear whether the performance gains
seen with simulation will translate into benefits on real networks.
To explore this issue, we have implemented ATP, a transport
protocol designed specifically for wireless ad hoc networks. We
choose ATP because it uses a radically different design from
TCP and because reported results claim significant improvement
over TCP. We show how ATP must be modified in order to
be implemented in existing open-source wireless drivers, and
perform a comprehensive performance evaluation on a mesh
testbed under different operating conditions. Our resultsshow
that the performance of ATP is highly sensitive to protocol
parameters, especially the epoch timeout value. To improveits
performance we design an adaptive version that utilizes a self-
adjustable feedback mechanism instead of a fixed parameter.
We illustrate its advantages by using a measurement study to
compare it with the original ATP and to a standard TCP Tahoe
implementation.

I. I NTRODUCTION

Wireless mesh networks provide an economical, yet flexible
solution to the edge Internet connectivity for both urban areas
and developing countries, where the cost of laying fiber may
be too expensive. However, TCP performs poorly, in terms of
both throughput and fairness, in multi-hop wireless networks
[1], [2]. This is primarily due to the unique characteristics
of wireless networks, including spatial reuse and interference
constraints, which can be further exaggerated by the IEEE
802.11 MAC layer protocol that was initially intended for
single-hop wireless communication. Furthermore, packet loss
caused by signal fading, route changes, or interference can
be misinterpreted as a sign of congestion by TCP, and the
subsequent rate reduction may lead to under-utilization ofthe
wireless network.

Due to the importance of this problem, substantial effort
has been made to improve the efficiency and fairness of the
802.11 MAC [3]–[5], provide better scheduling of flows [6],
[7], to improve TCP performance [8]–[11], and to create new
transport protocols [12]–[15]. Much of the earlier work in this
area relies on mathematical modeling or packet-level simu-
lation to validate the improvements made, with substantially
less work validated with implementation and experiments.
This can be attributed to the difficulty in modifying the
network stack, which is normally built into the kernel of

modern operating systems. However, despite this difficulty,
experimental evaluations are indispensable since it’s difficult
to accurately model radio wave propagation with simulations
[16], and simulation results based on simplified assumptions
may differ significantly from experimental results [16], [17].
As a result, recent work has often recognized the need for
implementation and experimental results [6], [7], [15], [17].

In this paper, we add to the body of experimental work on
wireless transport protocols by implementing and conducting
a thorough performance evaluation of ATP (Ad-hoc Transport
Protocol). ATP is a clean-slate design of a transport protocol
for wireless networks, using rate-based congestion control and
cross-layer feedback on MAC-layer packet delays [12]. We
chose this protocol because relatively little work has been
done to evaluate clean-slate and cross-layer designs in an
experimental setting, and the original work on ATP included
only packet-level simulations. Our approach differs from one
previous implementation of ATP [6] in that we have imple-
mented the entire protocol, rather than just the congestion-
control algorithm. This enables us to study additional features,
such as quick-start rate probing and epoch-based feedback,
that have not previously been evaluated with experiments.
Our work focuses on thedetails that go into developing a
new transport protocol, whereas prior experimental work has
typically examined overall performance or fairness [3], [7],
[13].

Our implementation of ATP consists of three parts: driver-
level delay averaging, per-hop delay collection, and an end-
to-end user-level transport protocol. ATP’s congestion control
algorithm relies on measurement of the average transmission
and queueing delay experienced by packets along the path
used by a connection. We have modified an open-source
wireless driver to collect this data. ATP’s delay measurements
must then be collected and inserted into packets as they are
forwarded along a path. We have implemented a daemon
that intercepts packets at each hop, reads the current delay
measurement from the driver, and inserts this information into
an ATP header. Finally, we have implemented the transport
protocol itself on top of UDP using Python.

Our experimental results are obtained by running ATP in an
indoor wireless mesh testbed located at BYU and comparing
its performance to a TCP Tahoe implementation, also written
in Python. By examining packet-level traces of ATP, we are



able to identify several issues that cause it to perform poorly.
First, the quick-start probe used to calculate an initial sending
rate is extremely inaccurate, often resulting in an initialrate
that is much too slow or much too fast. Then, two other default
ATP parameters, the epoch timeout (1 second) and the rate
increase factor (0.2), result in ATP adjusting its rate too slowly.
Second, ATP is highly sensitive to the operating environment
– the MAC layer transmission rate and link quality; this may
explain why our results show worse performance than the
original simulations. Making ATP more aggressive improves
its performance somewhat, but it is difficult to find one set
of parameters that works well in all conditions. We design an
adaptive scheme for ATP that provides more prompt feedback
as needed and also includes a better initial rate estimation.
Our results show that these improvements to ATP allow it to
provide better performance and fairness than TCP over paths
of varying lengths.

II. ATP

ATP is a clean-slate design of a transport protocol for
wireless networks that uses rate-based congestion control. The
design can be divided into three separate functions, performed
by intermediate nodes, the receiver, and the sender.

A. Intermediate Nodes

Intermediate nodes maintain an exponentially weighted
moving average (EWMA) of the queuing delay (Qt) and the
transmission delay (Tt) for each packet:

Qt = α ∗Qt + (1− α) ∗Qsample,

Tt = α ∗ Tt + (1− α) ∗ Tsample,

whereα = 0.75. Each data packet carries the maximum delay
it has encountered so far,Dmax in an ATP header. A node
calculatesD = Qt + Tt and compares it toDmax, replacing
the packet’s value ifD > Dmax. Whenever the node observes
an idle channel, thenD = η ∗ (QT + Tt), whereη = 3. This
multiplier may increase to 5 for a path length of 5 or more
hops [12].

B. ATP Receiver

For every received packet belonging to a flow, the receiver
maintains an EWMA of the receivedDmax along the path:

Davg = β ∗Davg + (1 − β) ∗Dmax

whereβ = 0.85. Whenever an epoch timer expires (E = 1 s),
the receiver sends a feedback packet to the sender with this
Davg and up to 20 SACK blocks, which helps the sender know
which packets are missing.

C. ATP Sender

ATP senders implement a rate-based congestion control
algorithm that operates in three phases: increase, decrease, and
maintain. If the feedback rate (1/Davg) from the receiver is
(φ) times greater than the current rate (φ = 1.1), the sender
increases its sending rate linearly by1/5 (κ = 0.2) times
the difference between the current rate and the feedback rate

Parameter Meaning Default Value

E epoch timeout 1 s
α intermediate nodes averaging 0.75
β receiver averaging 0.85
η idle multiplier 3
φ rate increase threshold 1.1
κ rate increase factor 0.2

TABLE I
L IST OF IMPORTANT ATP PARAMETERS

ATP

TCP/UDP

IP

ath5k

WiFu

IP

ath5k

WiFu

iptables iptables IP

ath5k

WiFu

iptables

ATP

TCP/UDP

IP

ath5k

WiFu

iptables

Fig. 1. ATP Implementation Architecture

[12]. If the feedback rate is smaller than the current rate, the
sender immediately lowers it sending rate to the feedback rate.
Otherwise, the sender simply maintains its current sending
rate.

To determine the initial sending rate, the ATP sender
performsquick-start by sending a short probe packet along
its path. The receiver returns the probe immediately, without
any averaging applied to the maximum measured delay along
the path. The ATP sender repeats quick-start whenever it
misses three consecutive feedback packets from the receiver,
effectively restarting the congestion control algorithm.

For clarity, we list the relevant ATP parameters, their
meaning, and default values in Table I.

The only part of ATP that we do not implement is link
failure notification from intermediate nodes, similar to ELFN
[8]. We omit this because we use static routing for our
experiments, without testing any link failure scenarios.

III. I MPLEMENTATION

The architecture of our ATP implementation consists of
three major components: 1)delay averaging, 2) delay collec-
tion, and 3)transport protocol. Figure 1 illustrates how these
components interact. Delay averaging is done by modifying
the open sourceath5k driver [18]. Delay collection is per-
formed by writing an application for the WiFu toolkit, which
is software that has recently been developed at BYU. The
transport protocol, shown as ATP in the figure, is implemented
on top of UDP in Python.

A. Delay Averaging

ATP requires each intermediate node to measure the real-
time queuing and transmission delay for every packet transmit-
ted and to maintain a moving average of each of these values.
However, these measurements are not readily available in the
ath5k driver we use in our experiments, because packets are
dequeued and transmitted in hardware. This means that even
if we can tell exactly when a packet is put into the transmit
queue, it’s not possible for us to know when it’s dequeued and



the actual transmission starts. Thus to approximate ATP’s de-
lay measurements, we modified theath5k driver to measure
the sum of (Qsample + Tsample). This is the total time from
when a packet enters the transmit queue until an interrupt is
received, signalling the packet was successfully transmitted.
The driver maintains a moving average of this sum:

D = Qt+Tt = α∗ (Qt+Tt)+(1−α)∗ (Qsample+Tsample)

Mathematically, this is equivalent to keeping two separate
averages of the delays and then summing them. The driver
writesD to the /procfsfile system every time it changes.

One complication we encountered involves interrupt han-
dling for transmitted packets in theath5k driver. In the
driver initialization phase, an interrupt mask is configured
to determine which interrupts will be handled by the driver.
Although this can be enabled to generate an interrupt for every
single successful packet transmission (TXOK), this may cause
a performance degradation due to high interrupt load. Thus,by
default the driver is configured to only enable two interrupts:
one for the end-of-line (AR5K_INT_TXEOL), which indicates
this data frame is the last one in the transmit queue; and
one for the transmit descriptor (AR5k_INT_TXDESC), which
indicates that a group of frames were transmitted from the
transmit queue. This default interrupt handling configuration
will create an inaccuracy for our measurement of the total
delay for each packet under heavy load. When the wireless
network card is not busy transmitting data frame, the EOL
interrupt can be used as a good approximation for transmission
finish time for a packet because it may be the only packet
in the transmit queue. However, if the wireless card is busy
sending data frames, the descriptor interrupt only reflectsthe
last transmitted packet’s finish time, and no interrupt is sent for
the other packets in the batch. Therefore, the trade-off between
a more accurate measurement and better performance under
load is inevitable. We choose the latter since this is the default
configuration forath5k driver and we want to evaluate ATP
performance in a more realistic environment. We will discuss
the impact of this trade-off in our experimental results.

B. Delay Collection

We implement delay collection using the WiFu toolkit,
which allows user-space applications to intercept and process
IP packets as they are forwarded by the kernel. With WiFu,
the application specifies a set ofiptables rules to indicate
which packets to intercept, and then reads these packets using
thenetfilter interface. Thus our delay collection daemon
reads packets from thenetfilter queue, and then compares
Dmax from the packet with the current delay measurement
stored in/procfs. If the local delay is larger, then the daemon
replacesDmax with this node’s current delay measurement.
All packets are then sent back down to the kernel to continue
the forwarding process.

C. Transport Protocol

We implement ATP’s transport protocol functionality using
Python, running on top of UDP. This includes connection es-
tablishment and teardown, reliability, and congestion control.

32 bits

Source port # Dest. port #

Length Checksum

ATP Packet

32 bits

8 8 8 8

protocol ID version control SACK-len

Sequence Number

Acknowledge Number

Delay Field (μs)

Data or SACK blocks

(a) (b)

S
A
C
K
|
M
O
R
E

S
A
C
K
|
O
P
T

S
A
C
K
|
R
E
Q

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

control word (8 bits)

(C)

Fig. 2. ATP Header Format

During connection establishment, ATP uses quick-start to find
the initial rate, and it begins transmitting packets at thisspeed.
The TCP receiver averages delay measurements and sends
a periodic ACK to the sender, once per epoch. After each
received ACK, the sender will calculate a new rate and may
choose to retransmit some missing packets.

Our use of Python has some drawbacks. It is well estab-
lished that interpreted languages are usually slower than com-
piled languages. When building a transport protocol in Python,
this means that fine-grained timers may be less accurate than
in a C implementation, and that per-packet network I/O may
be slower. In our experiments, these drawbacks become more
obvious with multiple flows when multiple senders reside
on the same nodes and compete for the system resources.
However, for most cases our code is efficient, and we are
able to make comparisons between ATP in Python and TCP
in Python. We are currently rewriting our code in C to make
it more efficient, so that we can compare ATP to a kernel
implementation of TCP.

Because previous ATP publications do not include a header
format [12], [19], we design our own ATP header, which is
shown in Figure 2. Figure 2(a) shows a UDP datagram with an
ATP packet as the payload. Figure 2(b) shows the ATP header
and body, including:

• protocol ID: a number specifying ATP or TCP,
• version: the ATP version number,
• control: control flags,
• SACK len: total length in bytes of the SACK blocks,
• sequence number: sequence number in bytes, as with

TCP,
• acknowledgement number: ACK number in bytes, as with

TCP, and
• delay: maximum delay (Dmax) seen by intermediate

nodes along the path the packet traverses, and
• data/SACK: contains data for a packet going forward

along a path, contains SACK blocks for an ACK.



Note that for simplicity ACK packets do not carry data.
Figure 2(c) shows the structure of control flags for ATP

packet. Most of them have the same meaning as that of TCP
except the first three: SACK-MORE, SACK-OPT, and SACK-
REQ. Our implementation of ATP relies on SACK blocks to
trigger retransmission, which means that the SACK functions
essentially like a negative acknowledgement. When the sender
is bursty or otherwise finishes sending a burst of data, the
receiver cannot detect dropped packets from the end of the
burst. Thus the receiver sets the SACK-MORE flag whenever
it has not received any data for half of the epoch timeout
period. When receiving an ACK with this flag set, the sender
will retransmit anything that has not yet been acknowledged.
The SACK-OPT flag is set by the receiver to indicate that the
packet contains a SACK block rather than data. The SACK-
REQ flag is set by the sender during quick-start to ask the
receiver to immediately send a feedback packet, rather than
waiting for an epoch to expire.

The reliability portion of ATP will resend packets that
appear to be missing, based on the received SACK blocks in
a feedback packet. Retransmitted packets always have priority
over new packets. The sender expects a feedback packet once
every1.1 ∗ E seconds; the additional 10% of waiting time is
used to allow time for the feedback to travel from the receiver
to the sender.

IV. EXPERIMENT DESIGN AND SETUP

Experimental evaluation has several drawbacks. First, it
can be hard to generalize experiments from one testbed to
another, because the operating conditions (transmit power,
placement of nodes, link quality, etc.) may be different in each
deployment. Second, it can be difficult to achieve repeatable
results, because there are so many factors that can affect
performance. We have been careful to design our experiments
to avoid these pitfalls as much as possible, by varying the
operating conditions in the testbed and by limiting variability
from run to run as much as we can.

A. Experiment Design

We made an initial assessment of ATP performance using
a set of simple experiments and found that the following
variables influence performance and repeatability:

• environmental variation: Since our mesh testbed is lo-
cated in a major campus building, there are significant
differences in human activities and wireless connectivity
between different periods of day. To avoid this fluctuation
in interference from other wireless sources, we use IEEE
802.11a rather than 802.11b, since there is no other traffic
using this frequency in our building. In addition, we
alternate the test sequence between different protocols or
parameters in a random order to ensure that differences
seen between versions are not due to an abrupt environ-
ment change.

• MAC rate control: By default, theath5k driver uses a
rate control algorithm calledminstrel [20] to find the
best transmit rate given current conditions. This affects

1

2

345
6

Fig. 3. 2nd Floor Mesh Nodes and Path (Testbed A)

1

2

3

4

5

6

Fig. 4. 1st Floor Mesh Nodes and Path (Testbed B)

repeatability when different experiments see different
MAC rates. To eliminate this possibility, we turn off
minstrel and use a fixed transmit rate for our experiments.

• routing protocol: We initially used OLSR [21] to compute
routes for our experiments, but found that it would
withdraw routes under heavy congestion, causing periods
of time without any route between neighboring nodes.
As a result, for most experiments we use static routing
to ensure the routes are consistent across experiments.

B. Experiment Setup

The primary factor affecting transport protocol performance
in a single radio wireless mesh network is path length. For this
reason, our experiments primarily use a single path of varying
length to evaluate ATP performance. Figure 3 illustrates the
portion of our mesh testbed located on the second floor of
our building, with a 6-hop chain from mesh9→ mesh6. To
provide greater generality, we use a second second 6-hop chain
from mesh18→ mesh28 on the first floor of our building, as
shown in Figure 4. For brevity, we name these configurations
Testbed A and Testbed B. In our experiments, we activate
only the nodes in the chain and turn the rest to a different
frequency.



Each mesh node in these two configurations is a Dell
desktop running Ubuntu Linux (kernel 2.6.32) with a 3Com
3CRDAG675B wireless card (Atheros AR5413 chip) that
supports IEEE 802.11a/b/g. Each wireless card is loaded with
our modifiedath5k driver. In all our experiments, RTS/CTS
is disabled and the MAC retransmission retry is set tozero.
We configure each mesh node to operate on the 802.11a
band to minimize uncontrolled wireless interference. In all
our experiments, we transfer a 2MB text file from the sender
to the receiver and record all packet events at both ends
for analysis. We repeat each experiment at least 10 times to
obtain a sufficient sample. Finally, we explicitly change the
combination of transmit power and transmit bitrate on the
wireless card to emulate different link quality and operating
conditions. Due to space limitations, we only present some of
our results in the following sections.

V. EXPERIMENTSRESULTS AND ANALYSIS

We compare the performance of ATP to our implementation
of TCP Tahoe, which we also wrote in Python to provide a
fair comparison. We first examine the performance of ATP
regulating a single flow of traffic on Testbed A, so that
we can examine the details of its performance. Using this
experiment, we develop aggressive and adaptive versions of
ATP, to overcome some of its shortcomings. We then examine
the performance of these versions with multiple flows, and
generalize our results to also consider Testbed B. We finish
by examining the fairness of ATP in a class stack topology.

In all of our results, the error bars represent the standard
deviation of the measure.

A. Single Flow

For our single flow experiments, we vary the length of the
path over which ATP and TCP operate, from one to six hops,
in Testbed A. We configure the nodes to use a bit rate of
24Mbps and a power of10 dBm.

1) Default ATP: We begin by running ATP with its de-
fault parameters, which are listed in Table I. These are the
parameters used by the simulations run by the designers of
ATP [12], [19]. Figure 5 shows the average goodput versus
path length. Generally, default ATP obtains better goodputthan
TCP, with significant gains for a single hop and for a six-hop
path. ATP also demonstrates more variance in experiments
than TCP Tahoe.

To investigate ATP performance in more detail, we plot the
goodput and delay evolution over time from one sample 3-
hop experiment in Figure 6(a). The upper half of the figure
shows the instantaneous goodput of the connection over a
200 ms sliding time frame. The lower half shows a delay
trace, with green points representing theDmax field of every
incoming packet at the receiver, blue points marking the
sending delayDsend chosen by the sender, and pink points
marking the periodic feedback ofDavg to the sender every
epoch. At the beginning of this trace, the sender transmits
with a rate (1/Dsend) that is too fast, which congests the
network and causesDmax increase by more than 60 ms.

1 2 3 4 5 6
Number of Hops

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Av
er

ag
e 

Go
od

pu
t (

Kb
ps

)

 Average Goodput vs. Hops

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

Fig. 5. Goodput, ATP and our variants, single flow, Testbed A

0 2 4 6 8
Time (second)

0

1

2

3

4

5

6

Go
od

pu
t (

M
bp

s)

Sample of ATP Goodput and Delay over Time (1 flow 3 hops)

Default ATP

0 2 4 6 80
10000
20000
30000
40000
50000
60000
70000

De
la

y 
(m

ic
ro

se
co

nd
) Ds

Dmax

Davg

(a) Initial rate too fast

0 2 4 6 8 10 12
Time (second)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Go
od

pu
t (

M
bp

s)

Sample of ATP Goodput and Delay over Time (1 flow 3 hops)

Default ATP

0 2 4 6 8 10 120
5000

10000
15000
20000
25000
30000
35000
40000
45000

De
la

y 
(m

ic
ro

se
co

nd
) Ds

Dmax

Davg

(b) Initial rate too slow

Fig. 6. Goodput and delay traces, default ATP, single flow, Testbed A

Because the receiver only sends feedback at the expiration
of the epoch (1 second), the sender won’t reduce its rate for
a long period. When the sender receives the feedback from
receiver, it overreacts by reducing to a sending rate of less
than 1 Mbps, and then slowly increases its rate (represented
by a steadily decreasingDsend) over multiple epochs due to
a small rate increase factor (κ). Figure 6(b) shows a different
trace where the initial sending rate is too slow and it takes
multiple epochs to adjust the sending rate to take advantage
of the link speed.

From the above analysis, we can see there are several
obvious faults with the recommended ATP implementation:



0 1 2 3 4
Time (second)

0

1

2

3

4

5

6

Go
od

pu
t (

M
bp

s)

Sample of ATP Goodput and Delay over Time (1 flow 3 hops)

Aggressive ATP

0 1 2 3 40
5000

10000
15000
20000
25000
30000
35000

De
la

y 
(m

ic
ro

se
co

nd
) Ds

Dmax

Davg

(a) Aggressive ATP delay trace

0.1 0.2 0.3 0.4 0.5
Time (second)

0

2000

4000

6000

8000

De
la

y 
(m

ic
ro

se
co

nd
)

ATP Delay Trace over Time

Ds

Dmax

Davg

Davg�

(b) Aggressive ATP Zoomed delay trace

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (second)

0

1

2

3

4

5

Go
od

pu
t (

M
bp

s)

Sample of ATP Goodput and Delay over Time (1 flow 3 hops)

Adaptive ATP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.50
1000
2000
3000
4000
5000
6000
7000
8000
9000

De
la

y 
(m

ic
ro

se
co

nd
) Ds

Dmax

Davg

(c) Adaptive ATP delay trace

Fig. 7. Goodput and delay traces, aggressive and adaptive ATP, single flow, testbed A

(a) quick-start may not obtain an appropriate sending rate with
only one probe, (b) the epoch timeout of 1 second is too large
for a high bitrate network, and (c) the rate increase factorκ
of 0.2 may be too slow, particularly when combined with a
long epoch period.

2) Aggressive ATP:To correct these problems, we explore
using a more aggressive set of parameters for ATP by reducing
the epoch timeoutE to 0.04 second and increasing the rate
increase factorκ to 0.5. Referring again to Figure 5, we can
see that with more prompt feedback, aggressive ATP performs
better than default ATP by an average of47%. The lower half
of Figure 7(a) shows how a faster rate adaption helps ATP
adjust to a poor choice of an initial rate. However, we also
observe that the instantaneous goodput is highly variable with
these new settings. Furthermore, the more aggressive feedback
does not necessarily mean moreprompt feedback, which is
best illustrated in Figure 7(b). This figure zooms in on the
delay trace and adds an additional set of light blue points
to indicate when the feedback from the receiver is actually
received by the sender, denotedDavg′ . There is a significant
delay for some of these feedback packets, indicating that they
must contend for the channel on the reverse path; note a cluster
of feedback packets received at 0.15 seconds in the figure. This
clustering occurs because we do not use a priority queue for
feedback packets.

We experimented with many different settings forE andκ,
and the results shown here are the best we obtained on Testbed
A. It is not guaranteed that these parameters will be best in
all deployments and along all paths. The designers of ATP
realized the potential problems with a fixed epoch timeout of
1 second and mention that it needs to be adapted for different
environments [12]. However, no solution has been provided
on how to adapt the epoch to fit different wireless paths.

3) Adaptive ATP:To find a better solution for this problem,
we introduce an adaptive SACK feedback mechanism that
can adjust the feedback delivery time according to different
operating situations. Our adaptive version of ATP uses the
same settings forE andκ as the aggressive ATP, but augments
the receiver to send quicker feedback. For every outgoing
packet from the sender, ATP inserts the current sending delay
Ds in the ATP header as depicted in Figure 2. It then uses the
following rules to send a feedback packet immediately, rather

than waiting for an epoch:

• if the receiver detects two dropped packets,
• if there are 10 consecutive incoming packets with

Dmax > Ds (this indicates the current sending rate is
too fast and is causing some contention in network), and

• if there are 10 consecutive incoming packets with
Dmax < (1− φ) ∗Ds (the sender is going too slowly).

We choose a threshold of 10 consecutive packets to avoid any
temporal turbulence in the network that would induce false
alarms and oscillation.

In addition, we add a number of hops fieldNh to the ATP
header. This field simply records the number of hops traversed
from sender to receiver, similar to the IP TTL field. The sender
can use this total number of hops to better adjust its idle
multiplier (η) at the initiation stage of connection. We use
η = 3.0 + 0.5 ∗ (h− 1), whereh is the number of hops. The
data collection portion of ATP updates this field as the packet
is forwarded.

Referring again to Figure 5, we can see that in this same
single flow experiment, adaptive ATP performs64% better
than default ATP. In addition, Figure 7(c) clearly shows a
more smooth rate curve for adaptive ATP, which confirms our
algorithm’s resilience to small turbulence.

B. Multiple Flows

Fairness is another important evaluation criteria for ATP
and our variants. We perform experiments with two and five
simultaneous flows between the same sender and receiver
pair in Testbed A. Figure 8 shows the results for two flows.
Figure 8(a) shows that adaptive ATP generally achieves the
best average goodput among the variants and TCP. Second,
the performance advantage obtained with aggressive ATP
over default ATP diminishes with increasing path length.
Figure 8 (b) shows a CDF of goodput for 6 hops, verifying the
performance advantage of ATP over TCP Tahoe in a multihop
mesh network. Finally, Figure 8(c) uses the same normalized
standard deviation of goodput, which is introduced in [12]
as anunfairness indexto calibrate the fairness between the
two flows. Smaller values indicate better fairness, with our
modified versions of ATP performing much better than default
ATP and TCP.



1 2 3 4 5 6
Number of Hops

0

500

1000

1500

2000

2500

3000

3500

4000
Av

er
ag

e 
Go

od
pu

t (
Kb

ps
)

 Average Goodput vs. Hops

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(a) Average Goodput vs. Hops

0 500 1000 1500 2000
Goodput (Kbps)

0.00

0.25

0.50

0.75

1.00

CD
F

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(b) CDF of Average Goodput for 6 hops

1 2 3 4 5 6
Number of Hops

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
iz

ed
 S

ta
nd

ar
d 

De
vi

at
io

n 
of

 T
hr

ou
gh

pu
t

 Fairness vs. Hops (smaller value means better fairness)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(c) Fairness

Fig. 8. Two Flows, ATP and our variants, Testbed A

1 2 3 4 5 6
Number of Hops

0

200

400

600

800

1000

1200

Av
er

ag
e 

Go
od

pu
t (

Kb
ps

)

 Average Goodput vs. Hops

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(a) Average Goodput vs. Hops

0 100 200 300 400 500 600 700
Goodput (Kbps)

0.00

0.25

0.50

0.75

1.00

CD
F

Tahoe

Aggressive ATP

Adaptive ATP

Default ATP

(b) CDF of Average Goodput for 6 hops

1 2 3 4 5 6
Number of Hops

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
iz

ed
 S

ta
nd

ar
d 

De
vi

at
io

n 
of

 T
hr

ou
gh

pu
t

 Fairness vs. Hops (smaller value means better fairness)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(c) Fairness

Fig. 9. Five Flows, ATP and our variants, Testbed A

1 2 3 4 5 6
Number of Hops

0

500

1000

1500

2000

2500

3000

3500

4000

Av
er

ag
e 

Go
od

pu
t (

Kb
ps

)

 Average Goodput vs. Hops

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(a) Single Flow, Multihops

1 2 3 4 5 6
Number of Hops

0

500

1000

1500

2000

2500

Av
er

ag
e 

Go
od

pu
t (

Kb
ps

)

 Average Goodput vs. Hops

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(b) Two Flows, Multihops

1 2 3 4 5 6
Number of Hops

0

100

200

300

400

500

600

700

800

900

Av
er

ag
e 

Go
od

pu
t (

Kb
ps

)

 Average Goodput vs. Hops

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(c) Five Flows, Multihops

Fig. 10. Goodput, ATP and our variants, Testbed B

Figure 9 shows the results for five flows. Default ATP
performs surprisingly well in this experiment for flows longer
than one hop, and aggressive ATP fares poorly. This makes
sense, because conservative rate adjustment should work better
when the network is more congested. However, our adaptive
version of ATP demonstrates remarkable consistency, and
generally performs on a par with default ATP, with better
fairness.

C. Generality

To demonstrate the generality of our results, we examine
ATP’s performance under a significantly different environment
using Testbed B from Figure 4. We configure each mesh node
to use a bit rate of6 Mbps and a power of17 dBm. The
increased transmission power and reduced bitrate, in addition

to the sparser distribution of nodes, provides a more reliable,
stable mesh with lower bandwidth. For brevity, we show only
the goodput and fairness results with respect to the number of
flows.

Figure 10 shows the goodput for the one, two, and five
flow experiments. Due to the low bandwidth and better link
quality, there is not much difference exhibited between differ-
ent protocols in the one and two flow scenarios, and TCP’s
performance is much better. For five flows, TCP outperforms
ATP and its variants for paths over three hops long. Aggressive
ATP generally has the worst goodput among all the tested
protocols in this scenario, which further confirms that the
aggressive parameters setting may not be beneficial under all
circumstances.

Figure 11 shows the fairness results for the same two and



1 2 3 4 5 6
Number of Hops

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
iz

ed
 S

ta
nd

ar
d 

De
vi

at
io

n 
of

 T
hr

ou
gh

pu
t

 Fairness vs. Hops (smaller value means better fairness)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(a) Two Flows, Multihops

1 2 3 4 5 6
Number of Hops

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
iz

ed
 S

ta
nd

ar
d 

De
vi

at
io

n 
of

 T
hr

ou
gh

pu
t

 Fairness vs. Hops (smaller value means better fairness)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(b) Five Flows, Multihops

Fig. 11. Fairness, ATP and our variants, Testbed B

five flow experiments on Testbed B. It is clear that the goodput
advantage of both TCP and default ATP shown in the previous
figure are achieved at the sacrifice of fairness. TCP generally
exhibits the worst fairness among all those tested. Meanwhile,
aggressive ATP generally shows the best fairness over all,
which suggests that a shorter epoch timeout contributes to
better fairness. It is possible that adaptive ATP should also
try to adjust the epoch time so that it is more fair in this
situation.

D. Fairness with Stack Topology

Our fairness results so far are all for flows that share the
same path during experiments. A common stack topology
tests fairness when two flows on the edges of a network
starve a flow in the middle [22]. The research community
has addressed this issue in numerous works [6], [7], [13], [22]
with various approaches. To explore ATP’s behavior in this
situation, we construct a stack topology using our first floor
nodes, as shown in Figure 12. We run an experiment that
starts the flows sequentially, with a 3 second delay between
each flow.

Figure 13 shows the instantaneous goodput of each flow
for different protocols. Since our stack topology does not
contain the exact spacing that is often used in simulations
and mathematical models, we can not estimate the appropriate
fair share for each flow. However, the difference among the

flow 1 flow 2

flow 3

Fig. 12. Stack Topology Constructed on First Floor Mesh

0 20 40 60 80 100 120
Time (second)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
st

an
ta

ne
ou

s 
Go

od
pu

t (
M

bp
s)

TCP-Tahoe Instantaneous Goodput over Time

Flow 1
Flow 2
Flow 3

(a) TCP Tahoe

0 10 20 30 40 50 60 70
Time (second)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

In
st

an
ta

ne
ou

s 
Go

od
pu

t (
M

bp
s)

Default ATP Instantaneous Goodput over Time

Flow 1
Flow 2
Flow 3

(b) Default ATP

0 10 20 30 40 50 60 70 80
Time (second)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
st

an
ta

ne
ou

s 
Go

od
pu

t (
M

bp
s)

Aggressive ATP Instantaneous Goodput over Time

Flow 1
Flow 2
Flow 3

(c) Aggressive ATP

0 10 20 30 40 50 60
Time (second)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

an
ta

ne
ou

s 
Go

od
pu

t (
M

bp
s)

Adaptive ATP Instantaneous Goodput over Time

Flow 1
Flow 2
Flow 3

(d) Adaptive ATP

Fig. 13. Goodput trace, TCP and ATP variants, Stack topology

protocols in how they handle this situation are enlightening.
Tahoe periodically starves the flow in the middle (flow 3),
which validates our topology configuration. Default ATP does
not perform as badly, but does provide the middle flow with
only 1/5 the throughput of the other two flows. The sawtooth
pattern in this case is due to the combination of severe penalty
for a missed feedback packet and ATP’s conservative rate
recovery. Both aggressive and adaptive ATP provide much
better goodput for the middle flow, with aggressive ATP taking
more bandwidth away from flow 1. Table II lists the average
goodput each flow obtains when all three flows are active with
transmission. From the channel utilization perspective, both
adaptive ATP and default ATP achieve better total goodput
during the contention period, and adaptive ATP provides the
best utility, as measured by the log of the goodput.

E. Randomized Flows

Finally, we perform a series of experiments that mimic the
use of a mesh network. In these experiments, we randomly
choose a set of flows in both the first and second floors of



Flow 1 Flow 2 Flow 3 Aggreg.
Protocol (kbps) (kbps) (kbps) (kbps) Utility

TCP Tahoe 703 1184 480 2368 8.60
Default ATP 2246 2483 546 5275 9.48
Aggressive ATP 966 1992 951 3909 9.26
Adaptive ATP 2085 2410 875 5369 9.64

TABLE II
GOODPUTSHARE OF EACH FLOW IN STACK EXPERIMENT

our mesh network, varying the number of simultaneous flows
to impose different loads. We examine two scenarios:file
transfer and streaming. For file transfer, we simultaneously
initiate a 1 MB file transfer between randomly pairs of nodes
and then calculate the overall goodput. For streaming, we
simultaneously initiate a backlogged TCP transfer betweenthe
randomly chosen pairs and terminate the transmission after30
seconds.

In these experiments, we use the OSLR [21] routing proto-
col, rather than static routing, similar to how a mesh network
would be operated. To obtain longer routes, we reduce the
power to2dBm and use a bit rate of6Mbps. This provides a
maximum path length of 4 hops in our mesh. We repeat each
experiment 10 times with different random flows.

1) File Transfer: Figure 14 shows the CDF of per-flow
measured goodput for different numbers of simultaneous
flows. We consider any flow with goodput lower than1Kbps
as starved. Clearly, TCP Tahoe has a greater proportion of
starved flows. With 32 flows, Tahoe starves nearly half of
the total flows. All versions of ATP perform very well from
the fairness perspective, with almost no starvation for up
to 8 simultaneous flows. For 32 flows, ATP also has some
starvation, with percentages from20% to 30%, and adaptive
ATP performs best among the variations.

We next consider the tradeoff of aggregate goodput and
fairness for this experiment. For fairness, we use the log utility,
which is the sum of the log of each flow’s goodput, with
a minor adjustment to avoid a singularity in the calculation.
When taking the log of a flow’s goodput, any totally starved
flow yields negative infinity. Thus for starved flows, we assign
their goodput to one byte.

Figure 15 shows both the aggregate goodput and log utility
for the file transfer experiments. Tahoe generally obtains the
best aggregate goodput for the multiple flows runs. However,
this performance is achieved at the cost of overall utility,which
is the lowest of all protocols tested and is zero for 32 flows
due to starvation of some flows. Adaptive ATP has both the
best aggregate goodput among all ATP versions and also the
highest utility.

2) Streaming:The streaming experiments show drastically
different goodput and utility results than the file transfer
experiments. Figure 16(a) shows the aggregate goodput for
the 30 second streaming experiments. Default ATP has much
better performance here, and fairly good utility. AdaptiveATP
performs competitively with the default settings in most cases,
but has much better utility as the number of flows increases.

1K 10K 100K 1M 10M
Goodput (bps)

0.00

0.25

0.50

0.75

1.00

CD
F

1 Flow
4 Flows
8 Flows
16 Flows
32 Flows

(a) TCP Tahoe

1K 10K 100K 1M 10M
Goodput (bps)

0.00

0.25

0.50

0.75

1.00

CD
F

1 Flow
4 Flows
8 Flows
16 Flows
32 Flows

(b) Default ATP

1K 10K 100K 1M 10M
Goodput (bps)

0.00

0.25

0.50

0.75

1.00

CD
F

1 Flow
4 Flows
8 Flows
16 Flows
32 Flows

(c) Aggressive ATP

1K 10K 100K 1M 10M
Goodput (bps)

0.00

0.25

0.50

0.75

1.00

CD
F

1 Flow
4 Flows
8 Flows
16 Flows
32 Flows

(d) Adaptive ATP

Fig. 14. CDF of per-flow goodput, random file transfer

1 Flow 4 Flows 8 Flows 16 Flows 32 Flows
Number of Flows

0

2

4

6

8

10

12

Av
er

ag
e 

Pe
r-R

un
 A

gg
re

ga
te

 G
oo

dp
ut

 (M
bp

s)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(a) Average aggregate goodput

4 Flow 8 Flows 16 Flows 32 Flows
Number of Flows

0

5

10

15

20

25

Lo
g 

Ut
ili

ty
 o

f G
oo

dp
ut

 (K
bp

s)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(b) Average log utility

Fig. 15. Goodput and fairness, random file transfer

The CDF of per-flow goodput is similar to the file transfer
case, so we do not show them here.

VI. RELATED WORK

There has been extensive research to improve the perfor-
mance of transport protocols in multihop wireless networksin
the last decade. However, relatively few fully implemented
transport protocols are available, and experimental results
are still uncommon. Two TCP alternatives that have been
implemented are DiffQ [6] and Hop [15]. DiffQ applies the
theoretical work of cross-layer optimization and develops
a practical backlog-based MAC scheduling algorithm with
router-assisted backpressure congestion control. This work

1 Flow 4 Flows 8 Flows 16 Flows 32 Flows
Number of Flows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

Pe
r-R

un
 A

gg
re

ga
te

 G
oo

dp
ut

 (M
bp

s)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(a) Average aggregate goodput

4 Flow 8 Flows 16 Flows 32 Flows
Number of Flows

0

5

10

15

20

25

Lo
g 

Ut
ili

ty
 o

f G
oo

dp
ut

 (K
bp

s)

Default ATP
TCP-Tahoe
Aggressive ATP
Adaptive ATP

(b) Average log utility

Fig. 16. Goodput and fairness, random streaming



includes an implementation of ATP, but only the conges-
tion control portion of the protocol. Hop builds hop-by-hop
transport protocol with in-network caching. It usesblocks,
large segments of contiguous data, instead of packets, and
uses transport-layer reliability to achieve both higher overall
throughput and robustness with lossy wireless links. Their
implementation is also done in user space running over UDP.
Other recent experimental work focuses on the fairness of TCP
in wireless networks, using protocols that allocate rates and
work in conjunction with existing TCP protocols [7], [13].

Implementing network protocols at the user-level is not
something new to the networking community [23] [24] [25].
The comparative advantages of user-level protocol implemen-
tation, such as the ease of prototyping and debugging are
well established. Notable transport protocols include Alpine
[26], which provides a framework for user-level network
protocol development in FreeBSD, and Daytona [27], which
implements a user-level TCP stack for Linux.

VII. C ONCLUSION

In this paper, we present an extensive performance evalua-
tion of ATP in a wireless mesh testbed. We have examined the
performance of ATP as it was designed, with regard to both
goodput and fairness, and found that its original design does
not perform as well as shown in earlier simulation results.
Although it generally outperforms TCP-Tahoe in terms of
goodput, especially for the longer paths with lossy links,
ATP’s quick-start and fixed epoch feedback mechanism need
improved designs. This is another piece of evidence that
network protocols should be evaluated with both simulations
and an implementation in order to properly validate their
performance.

Our exploration of a revised design for ATP includes both
using more aggressive parameters and creating a more adap-
tive feedback mechanism. A more aggressive ATP improves
performance in some circumstances, but does not perform as
well with multiple competing flows. Our adaptive design of
ATP demonstrates a good mix of high goodput and fairness.

Due to unfairness at the MAC layer, ATP and our vari-
ants alone will not solve all the problems encountered by
transport protocols in a wireless mesh network. However, we
are encouraged that rate-based congestion control has been
shown to be useful in a wireless setting, and that cross-layer
feedback of delays encountered at the MAC layer can improve
performance.

With the help of the WiFu toolkit, we plan to expand our
experimental evaluations to include more transport protocols
proposed by other researchers. In particular, those works that
haven’t been evaluated with implementations and experiments
are of special interest to us.

REFERENCES

[1] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “Theimpact
of multihop wireless channel on TCP throughput and loss,” inIEEE
INFOCOM, vol. 3, 2003, pp. 1744–1753 vol.3.

[2] V. Gambiroza, B. Sadeghi, and E. W. Knightly, “End-to-end perfor-
mance and fairness in multihop wireless backhaul networks,” in ACM
MobiCom. New York, NY, USA: ACM, 2004, pp. 287–301.

[3] A. Aziz, D. Starobinski, P. Thiran, and A. El Fawal, “EZ-Flow: removing
turbulence in IEEE 802.11 wireless mesh networks without message
passing,” inACM CoNEXT. New York, NY, USA: ACM, 2009, pp.
73–84.

[4] M. Heusse, F. Rousseau, R. Guillier, and A. Duda, “Idle sense: an
optimal access method for high throughput and fairness in rate diverse
wireless LANs,” in ACM SIGCOMM. New York, NY, USA: ACM,
2005, pp. 121–132.

[5] B. Bensaou and Z. Fang, “A fair MAC protocol for IEEE 802.11-based
ad hoc networks: Design and implementation,”Wireless Communica-
tions, IEEE Transactions on, vol. 6, no. 8, pp. 2934–2941, August 2007.

[6] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “Diffq: Practical differ-
ential backlog congestion control for wireless networks,”in INFOCOM
2009, IEEE, April 2009, pp. 262 –270.

[7] K.-Y. Jang, K. Psounis, and R. Govindan, “Simple yet efficient, trans-
parent airtime allocation for TCP in wireless mesh networks,” in ACM
CoNEXT. New York, NY, USA: ACM, 2010, pp. 28:1–28:12.

[8] X. Yu, “Improving TCP performance over mobile ad hoc networks by
exploiting cross-layer information awareness,” inMobiCom. New York,
NY, USA: ACM Press, 2004, pp. 231–244.

[9] R. de Oliveira and T. Braun, “A dynamic adaptive acknowledgment
strategy for TCP over multihop wireless networks,” inIEEE INFOCOM,
vol. 3, March 2005, pp. 1863–1874 vol. 3.

[10] S. M. Elrakabawy, A. Klemm, and C. Lindemann, “TCP with adaptive
pacing for multihop wireless networks,” inMobiHoc. New York, NY,
USA: ACM Press, 2005, pp. 288–299.

[11] K. Nahm, A. Helmy, and J. C. C. Kuo, “TCP over multihop 802.11
networks: issues and performance enhancement,” inMobiHoc. New
York, NY, USA: ACM Press, 2005, pp. 277–287.

[12] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and A. R. Sivakumar,
“ATP: a reliable transport protocol for ad hoc networks,”Mobile
Computing, IEEE Transactions on, vol. 4, no. 6, pp. 588–603, 2005.

[13] S. Rangwala, A. Jindal, K.-Y. Jang, K. Psounis, and R. Govindan, “Un-
derstanding congestion control in multi-hop wireless meshnetworks,”
in ACM MobiCom. New York, NY, USA: ACM, 2008, pp. 291–302.

[14] D. Scofield, L. Wang, and D. Zappala, “HxH: A hop-by-hop transport
protocol for multi-hop wireless networks,” inThe Fourth International
Wireless Internet Conference, Nov. 2008.

[15] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani, “Block-switched
networks: a new paradigm for wireless transport,” inUSENIX NSDI.
Berkeley, CA, USA: USENIX Association, 2009, pp. 423–436.

[16] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott, “Ex-
perimental evaluation of wireless simulation assumptions,” in MSWiM.
New York, NY, USA: ACM Press, 2004, pp. 78–82.

[17] W. Kiess and M. Mauve, “A survey on real-world implementations of
mobile ad-hoc networks,”Ad Hoc Networks, vol. 5, no. 3, pp. 324–339,
April 2007.

[18] “Atheros linux wireless drivers.” [Online]. Available: http:
//linuxwireless.org/en/users/Drivers/ath5k

[19] K. Sundaresan, V. Anantharaman, H. Hsieh, and R. Sivakumar, “ATP:
A reliable transport protocol for ad-hoc networks,” inACM MobiHoc,
2003.

[20] “Minstrel rate control algorithm.” [Online]. Avail-
able: http://wireless.kernel.org/en/developers/Documentation/mac80211/
RateControl/minstrel

[21] A. Tønnesen, T. Lopatic, H. Gredler, B. Petrovitsch, A.Kaplan, S.-O.
Tücke et al., “olsrd - an adhoc wireless mesh routing daemon,.”
[Online]. Available: http://www.olsr.org

[22] K. Xu, M. Gerla, L. Qi, and Y. Shu, “Enhancing TCP fairness in ad hoc
wireless networks using neighborhood red,” inMobiCom. New York,
NY, USA: ACM, 2003, pp. 16–28.

[23] R. A. Thekkath, T. D. Nguyen, E. Moy, E. D. Lazowska, and S. Member,
“Implementing network protocols at user level,” inIEEE/ACM Transac-
tions on Networking, 1993, pp. 64–73.

[24] A. Edwards and S. Muir, “Experiences implementing a high performance
TCP in user-space,”SIGCOMM, vol. 25, no. 4, pp. 196–205, 1995.

[25] E. Kohler and E. Kohler, “The click modular router,”ACM Transactions
on Computer Systems, vol. 18, pp. 263–297, 2000.

[26] D. Ely, S. Savage, and D. Wetherall, “Alpine: a user-level infrastructure
for network protocol development,” inUSITS. Berkeley, CA, USA:
USENIX Association, 2001, p. 15.

[27] P. Pradhan, S. Kandula, W. Xu, A. Shaikh, and E. Nahum,
“Daytona: A user-level TCP stack.” [Online]. Available: http:
//nms.lcs.mit.edu/∼kandula/data/daytona.pdf


