Experimental Performance Evaluation of ATP In a
Wireless Mesh Network

Xingang Zhang, Randy Buck, Daniel Zappala
Computer Science Department
Brigham Young University
Provo, UT 84602, U.S.A.
zhang.xingang@byu.edu, sutekistudent@gmail.com, a@pzs.byu.edu

Abstract—It is well known that TCP performs poorly in modern operating systems. However, despite this difficulty
wireless mesh networks. There has been intensive research i experimental evaluations are indispensable since iticdif
this area, but most work uses simulation as the only evaluatin to accurately model radio wave propagation with simulation

method; however, it is not clear whether the performance gais 16 d simulati Its based imolified i
seen with simulation will translate into benefits on real neworks, (18], @nd simulation results based on simplified assumption

To explore this issue, we have implemented ATP, a transport May differ significantly from experimental results [16],7]1
protocol designed specifically for wireless ad hoc networkswe As a result, recent work has often recognized the need for

choose ATP because it uses a radically different design from jmplementation and experimental results [6], [7], [15]7]1

TCP and because reported results claim significant improvemnt ; ;
over TCP. We show how ATP must be modified in order to In this paper, we add to the body of experimental work on

be implemented in existing open-source wireless drivers, nal wireless transport protocols by i_mplementing and conagcti
perform a comprehensive performance evaluation on a mesh & thorough performance evaluation of ATP (Ad-hoc Transport

testbed under different operating conditions. Our resultsshow Protocol). ATP is a clean-slate design of a transport puaitoc
that the performance of ATP is highly sensitive to protocol for wireless networks, using rate-based congestion cbaird
parameters, especially the epoch timeout value. To improvés cross-layer feedback on MAC-layer packet delays [12]. We

performance we design an adaptive version that utilizes a He . . .
adjustable feedback mechanism instead of a fixed parameter. chose this protocol because relatively little work has been

We illustrate its advantages by using a measurement study to done to evaluate clean-slate and cross-layer designs in an
compare it with the original ATP and to a standard TCP Tahoe experimental setting, and the original work on ATP included
implementation. only packet-level simulations. Our approach differs froneo
previous implementation of ATP [6] in that we have imple-
|. INTRODUCTION mented the entire protocol, rather than just the congestion

Wireless mesh networks provide an economical, yet flexibé®ntrol algorithm. This enables us to study additionaldesd,
solution to the edge Internet connectivity for both urbagaar such as quick-start rate probing and epoch-based feedback,
and developing countries, where the cost of laying fiber mdlyat have not previously been evaluated with experiments.
be too expensive. However, TCP performs poorly, in terms 6fur work focuses on theletails that go into developing a
both throughput and fairness, in multi-hop wireless nekwor new transport protocol, whereas prior experimental work ha
[1], [2]. This is primarily due to the unique characteristictypically examined overall performance or fairness [3]}, [7
of wireless networks, including spatial reuse and interiee [13].
constraints, which can be further exaggerated by the IEEEOur implementation of ATP consists of three parts: driver-
802.11 MAC layer protocol that was initially intended forevel delay averaging, per-hop delay collection, and an end
single-hop wireless communication. Furthermore, pacbss | to-end user-level transport protocol. ATP’s congestiontiam
caused by signal fading, route changes, or interference adgorithm relies on measurement of the average transmissio
be misinterpreted as a sign of congestion by TCP, and thed queueing delay experienced by packets along the path
subsequent rate reduction may lead to under-utilizatiothef used by a connection. We have modified an open-source
wireless network. wireless driver to collect this data. ATP’s delay measuneisie

Due to the importance of this problem, substantial efforhust then be collected and inserted into packets as they are
has been made to improve the efficiency and fairness of #wewarded along a path. We have implemented a daemon
802.11 MAC [3]-[5], provide better scheduling of flows [6]that intercepts packets at each hop, reads the current delay
[7], to improve TCP performance [8]-[11], and to create nemeasurement from the driver, and inserts this informatia i
transport protocols [12]-[15]. Much of the earlier work mg an ATP header. Finally, we have implemented the transport
area relies on mathematical modeling or packet-level simprotocol itself on top of UDP using Python.
lation to validate the improvements made, with substdgtial Our experimental results are obtained by running ATP in an
less work validated with implementation and experimentsidoor wireless mesh testbed located at BYU and comparing
This can be attributed to the difficulty in modifying theits performance to a TCP Tahoe implementation, also written
network stack, which is normally built into the kernel ofin Python. By examining packet-level traces of ATP, we are

able to identify several issues that cause it to perform Igoor Parameter Meaning Default Value

First, the quick-start probe used to calculate an initialdéeg E epoch timeout ls

rate is extremely inaccurate, often resulting in an inititie a intermediate nodes averaging 008'25

that is much too slow or much too fast. Then, two other default ,67 {;Zexﬂt;\ﬁr,agmg 3

ATP parameters, the epoch timeout (1 second) and the rate —% rate increase threshold 11

increase factor (0.2), result in ATP adjusting its rate towy. K rate increase factor 0.2

Second, ATP is highly sensitive to the operating environimen TABLE |

— the MAC layer transmission rate and link quality; this may LIST OF IMPORTANTATP PARAMETERS

explain why our results show worse performance than the

original simulations. Making ATP more aggressive improves‘ | [| Cwr] Cwire]] [

its performance somewhat, but it is difficult to find one set

of parameters that works well in all conditions. We design an U \ T

adaptive scheme for ATP that provides more prompt feedbac__*__[iptables [P [owbles] [P [tobies] [P [iptables
athsk [athsk | [athsk | | athsk

as needed and also includes a better initial rate estimation
Our results show that these improvements to ATP allow it to

provide better performance and fairness than TCP over paths Fig. 1. ATP Implementation Architecture
of varying lengths.

_ I. AfTP [12]. If the feedback rate is smaller than the current rdte, t
ATP is a clean-slate design of a transport protocol f@fender immediately lowers it sending rate to the feedbaek ra
wireless networks that uses rate-based congestion comtvel Otherwise, the sender simply maintains its current sending

design can be divided into three separate functions, padgdr rate.
by intermediate nodes, the receiver, and the sender. To determine the initial sending rate, the ATP sender
performsquick-startby sending a short probe packet along

] o . _its path. The receiver returns the probe immediately, witho
Intermediate nodes maintain an exponentially welght%y averaging applied to the maximum measured delay along

moving average (EWMA) of the queuing dela@) and the he path. The ATP sender repeats quick-start whenever it
transmission delayT() for each packet: misses three consecutive feedback packets from the receive
Q = a*Qi+(1—a)*Qeample, effectively _restarting_ the congestion control algorithm. .
For clarity, we list the relevant ATP parameters, their
meaning, and default values in Table I.
wherea = 0.75. Each data packet carries the maximum delay The only part of ATP that we do not implement is link
it has encountered so faR),,.. in an ATP header. A node failure notification from intermediate nodes, similar to L
calculatesD = Q; + T; and compares it td,, ..., replacing [8]. We omit this because we use static routing for our
the packet’s value iD > D,,... Whenever the node observegxperiments, without testing any link failure scenarios.
an idle channel, the® = 7 * (Qr + T;), wheren = 3. This
multiplier may increase to 5 for a path length of 5 or more
hops [12]. The architecture of our ATP implementation consists of
) three major components: Helay averaging2) delay collec-
B. ATP Receiver tion, and 3)transport protocal Figure 1 illustrates how these
For every received packet belonging to a flow, the receiveomponents interact. Delay averaging is done by modifying
maintains an EWMA of the receiveB,,,, along the path: the open sourcat h5k driver [18]. Delay collection is per-
formed by writing an application for the WiFu toolkit, which
Davg = f# Davg + (1 =) * Dmaa is software that has recently been developed at BYU. The
where3 = 0.85. Whenever an epoch timer expires & 1), transport protocol, shown as ATP in the figure, is implemente
the receiver sends a feedback packet to the sender with @istop of UDP in Python.
Dg.g and up to 20 SACK blocks, which helps the sender kn0>§\/
which packets are missing.

A. Intermediate Nodes

T, = axTi+(1—a)x Tsample;

Il. | MPLEMENTATION

. Delay Averaging

ATP requires each intermediate node to measure the real-
C. ATP Sender time queuing and transmission delay for every packet tritasm
ATP senders implement a rate-based congestion contiell and to maintain a moving average of each of these values.
algorithm that operates in three phases: increase, degt@as However, these measurements are not readily availablesin th
maintain. If the feedback ratd (D,.4) from the receiver is at h5k driver we use in our experiments, because packets are
(¢) times greater than the current rate € 1.1), the sender dequeued and transmitted in hardware. This means that even
increases its sending rate linearly by5 (v = 0.2) times if we can tell exactly when a packet is put into the transmit
the difference between the current rate and the feedbaek ratieue, it's not possible for us to know when it's dequeued and

32 bits 32 bits

the actual transmission starts. Thus to approximate ATe-s d

\ \ 8 | 8 | 8 | 8

lay measurements, we modified taeh5k driver to measure

protocol ID‘ version ‘ control ‘SACK—Ien

Source port # Dest. port #

Sequence Number

the sum of Qsampie + Tsample)- This is the total time from
when a packet enters the transmit queue until an interrupt is

Length Checksum Acknowledge Number

received, signalling the packet was successfully trarisohit
The driver maintains a moving average of this sum:

Delay Field (ps)

ATP Packet
Data or SACK blocks

D= Qt +Tt = o x* (Qt +Tt) + (1 - Oé) * (Qsample +Tsample)

Mathematically, this is equivalent to keeping two separate
averages of the delays and then summing them. The driver
writes D to the/procfsfile system every time it changes.

One complication we encountered involves interrupt han-
dling for transmitted packets in that h5k driver. In the
driver initialization phase, an interrupt mask is configure
to determine which interrupts will be handled by the driver.
Although this can be enabled to generate an interrupt faryeve
single successful packet transmissidiXQK), this may cause
a performance degradation due to high interrupt load. Tiwus,
default the driver is configured to only enable two intersupt
one for the end-of-lineARSK | NT_TXECL), which indicates

(a) (b)

M®OZ—AO>W0

H4T0—®"O>W0

omI—RxOP> WV
~O>
Iuo
—“un
z<w

control word (8 bits)

()

Fi

g. 2. ATP Header Format

this data frame is the last one in the transmit queue; aRring connection establishment, ATP uses quick-startnim fi

one for the transmit descriptoARSk _| NT_TXDESC), which

the initial rate, and it begins transmitting packets at #iuised.

indicates that a group of frames were transmitted from tHde TCP receiver averages delay measurements and sends
transmit queue. This default interrupt handling configorat @ Periodic ACK to the sender, once per epoch. After each
will create an inaccuracy for our measurement of the totE§ceived ACK, the sender will calculate a new rate and may
delay for each packet under heavy load. When the wirelggd0ose to retransmit some missing packets.

network card is not busy transmitting data frame, the EOL Our use of Python has some drawbacks. It is well estab-
interrupt can be used as a good approximation for transomisslished that interpreted languages are usually slower tham c
finish time for a packet because it may be the only packeied languages. When building a transport protocol in Byth

in the transmit queue. However, if the wireless card is budjis means that fine-grained timers may be less accurate than
sending data frames, the descriptor interrupt only reflgms in @ C implementation, and that per-packet network 1/0 may
last transmitted packet’s finish time, and no interrupt ist §er Pe slower. In our experiments, these drawbacks become more
the other packets in the batch. Therefore, the trade-offésst Obvious with multiple flows when multiple senders reside

a more accurate measurement and better performance ufdethe same nodes and compete for the system resources.
load is inevitable. We choose the latter since this is thaulef However, for most cases our code is efficient, and we are
configuration forat h5k driver and we want to evaluate ATPable to make comparisons between ATP in Python and TCP
performance in a more realistic environment. We will discudn Python. We are currently rewriting our code in C to make

the impact of this trade-off in our experimental results.
B. Delay Collection

it more efficient, so that we can compare ATP to a kernel
implementation of TCP.
Because previous ATP publications do not include a header

We implement delay collection using the WiFu toolkit¢yrmat [12], [19], we design our own ATP header, which is
which allows user-space applications to intercept andg®¥®c ghown in Figure 2. Figure 2(a) shows a UDP datagram with an

IP packets as they are forwarded by the kernel. With WiFyrp packet as the payload. Figure 2(b) shows the ATP header
the application specifies a setiopt abl es rules to indicate 4ng body, including:

which packets to intercept, and then reads these packeis usi
thenet fil t er interface. Thus our delay collection daemon
reads packets fromtheet f i | t er queue, and then compares
D,nae from the packet with the current delay measurement®
stored in/procfs If the local delay is larger, then the daemon
replacesD,,, With this node’s current delay measurement. *
All packets are then sent back down to the kernel to continue
the forwarding process.

C. Transport Protocol

We implement ATP’s transport protocol functionality using
Python, running on top of UDP. This includes connection es-«
tablishment and teardown, reliability, and congestiontiemn

protocol ID: a number specifying ATP or TCP,

« version the ATP version number,

control: control flags,

o SACK len total length in bytes of the SACK blocks,

sequence numbesequence number in bytes, as with
TCP,

acknowledgement numbekCK number in bytes, as with
TCP, and

delay maximum delay D,...) seen by intermediate
nodes along the path the packet traverses, and
data/SACK contains data for a packet going forward
along a path, contains SACK blocks for an ACK.

Note that for simplicity ACK packets do not carry data.

Figure 2(c) shows the structure of control flags for ATP
packet. Most of them have the same meaning as that of TCP
except the first three: SACK-MORE, SACK-OPT, and SACK-
REQ. Our implementation of ATP relies on SACK blocks to
trigger retransmission, which means that the SACK funation
essentially like a negative acknowledgement. When theesend
is bursty or otherwise finishes sending a burst of data, the
receiver cannot detect dropped packets from the end of the
burst. Thus the receiver sets the SACK-MORE flag whenever
it has not received any data for half of the epoch timeout
period. When receiving an ACK with this flag set, the sender
will retransmit anything that has not yet been acknowledged
The SACK-OPT flag is set by the receiver to indicate that the
packet contains a SACK block rather than data. The SACK-
REQ flag is set by the sender during quick-start to ask the
receiver to immediately send a feedback packet, rather than
waiting for an epoch to expire.

The reliability portion of ATP will resend packets that
appear to be missing, based on the received SACK blocks in
a feedback packet. Retransmitted packets always havetyprior
over new packets. The sender expects a feedback packet once
every1l.1 x E seconds; the additional 10% of waiting time is
used to allow time for the feedback to travel from the receive
to the sender.

IV. EXPERIMENT DESIGN AND SETUP

Experimental evaluation has several drawbacks. First, it
can be hard to generalize experiments from one testbed to
another, because the operating conditions (transmit power
placement of nodes, link quality, etc.) may be differentacte
deployment. Second, it can be difficult to achieve repeatabl
results, because there are so many factors that can affect
performance. We have been careful to design our experiments
to avoid these pitfalls as much as possible, by varying the
operating conditions in the testbed and by limiting vaiigbi
from run to run as much as we can. .

A. Experiment Design
We made an initial assessment of ATP performance using
a set of simple experiments and found that the following
variables influence performance and repeatability:
« environmental variationSince our mesh testbed is lo-
cated in a major campus building, there are significa

0]] L 0
2232 || 2230 || 2228 |[| 2226 || 2224 ||| 2222 ||| 2220 || 2218 ||| 2216 ||| 2214
mesh2

g [] O B —
mesh4

2223 2220
. [

5
mesh8 e,
[)
T

Fig. 3. 2nd Floor Mesh Nodes and Path (Testbed A)

Fig. 4. 1st Floor Mesh Nodes and Path (Testbed B)

repeatability when different experiments see different
MAC rates. To eliminate this possibility, we turn off
minstrel and use a fixed transmit rate for our experiments.
routing protocol We initially used OLSR [21] to compute
routes for our experiments, but found that it would
withdraw routes under heavy congestion, causing periods
of time without any route between neighboring nodes.
As a result, for most experiments we use static routing
to ensure the routes are consistent across experiments.

B. Experiment Setup

differences in human activities and wireless connectivity The primary factor affecting transport protocol perforroan
between different periods of day. To avoid this fluctuatioim a single radio wireless mesh network is path length. Fer th
in interference from other wireless sources, we use IEEEason, our experiments primarily use a single path of naryi

802.11arather than 802.11b, since there is no other trafftmgth to evaluate ATP performance. Figure 3 illustrates th
using this frequency in our building. In addition, weportion of our mesh testbed located on the second floor of
alternate the test sequence between different protocolsoor building, with a 6-hop chain from mesh9 mesh6. To
parameters in a random order to ensure that differenqa®vide greater generality, we use a second second 6-hap cha
seen between versions are not due to an abrupt enviremom mesh18— mesh28 on the first floor of our building, as
ment change. shown in Figure 4. For brevity, we name these configurations
MAC rate control By default, theat h5k driver uses a Testbed A and Testbed B In our experiments, we activate
rate control algorithm calledi nst r el [20] to find the only the nodes in the chain and turn the rest to a different
best transmit rate given current conditions. This affectsequency.

Each mesh node in these two configurations is a Dell o Average Goodput vs. Hops
desktop running Ubuntu Linux (kernel 2.6.32) with a 3Com O Defoult ATP
3CRDAG675B wireless card (Atheros AR5413 chip) that B Aggressive ATP
supports IEEE 802.11a/b/g. Each wireless card is loadeul wit = Ao)
our modifiedat h5k driver. In all our experiments, RTS/CTS
is disabled and the MAC retransmission retry is sezée
We configure each mesh node to operate on the 802.11a
band to minimize uncontrolled wireless interference. lh al
our experiments, we transfer a 2MB text file from the sender
to the receiver and record all packet events at both ends 1000
for analysis. We repeat each experiment at least 10 times to
obtain a sufficient sample. Finally, we explicitly change th
combination of transmit power and transmit bitrate on the
wireless card to emulate different link quality and opegti
conditions. Due to space limitations, we only present sofme o

8000

7000

6000

o
S
S
3

IS
1=
S
=)

3000

Average Goodput (Kbps)

2000

3
Number of Hops

Fig. 5. Goodput, ATP and our variants, single flow, Testbed A

Sample of ATP Goodput and Delay over Time (1 flow 3 hops)
T

our results in the following sections. i m)

V. EXPERIMENTSRESULTS AND ANALYSIS %“ {

We compare the performance of ATP to our implementation g : 1 p——
of TCP Tahoe, which we also wrote in Python to provide a ! " i ! .
fair comparison. We first examine the performance of ATP 70000 Time isecond)

: . ! 5 so000]- — o
regulating a single flow of traffic on Testbed A, so that g oo i o |l
we can examine the details of its performance. Using this E :gzwf M
experiment, we develop aggressive and adaptive versions of 2 2000 ; S
ATP, to overcome some of its shortcomings. We then examine e I U s v =

0 2 4 6 8

the performance of these versions with multiple flows, and
generalize our results to also consider Testbed B. We finish

.. . . (a) Initial rate too fast
by examining the fairness of ATP in a class stack topology.

In all of our results, the error bars represent the standard 5.5, S2mPle of ATP Goodput and Delay over Time (1 flow 3 hops)

deviation of the measure. gif’:H Default ATP | :
= i

A. Single Flow e T e it

For our single flow experiments, we vary the length of the 7 05
path over which ATP and TCP operate, from one to six hops, 45;0" : * rime (econt) _° oo
in Testbed A. We configure the nodes to use a bit rate of g d00— :‘ D
24 Mbps and a power ofl0 dBm. § 2000 oo,

1) Default ATP: We begin by running ATP with its de- £ 2o0ee —
fault parameters, which are listed in Table I. These are the g 10k f—— -
parameters used by the simulations run by the designers of o 4 s s R
ATP [12], [19]. Figure 5 shows the average goodput versus
path length. Generally, default ATP obtains better gootipart (b) Initial rate too slow

TCP, with significant gains for a single hop and for a six-hop rig. 6. Goodput and delay traces, default ATP, single flovgtied A
path. ATP also demonstrates more variance in experiments
than TCP Tahoe.

To investigate ATP performance in more detail, we plot thBecause the receiver only sends feedback at the expiration
goodput and delay evolution over time from one sample 8f the epoch (1 second), the sender won't reduce its rate for
hop experiment in Figure 6(a). The upper half of the figura long period. When the sender receives the feedback from
shows the instantaneous goodput of the connection overegeiver, it overreacts by reducing to a sending rate of less
200 ms sliding time frame. The lower half shows a delahan 1 Mbps, and then slowly increases its rate (represented
trace, with green points representing thg, ., field of every by a steadily decreasinf..,q) over multiple epochs due to
incoming packet at the receiver, blue points marking theesmall rate increase factot)(Figure 6(b) shows a different
sending delayD,.,q chosen by the sender, and pink pointtrace where the initial sending rate is too slow and it takes
marking the periodic feedback d,., to the sender every multiple epochs to adjust the sending rate to take advantage
epoch. At the beginning of this trace, the sender transmdafthe link speed.
with a rate {/Ds.nq) that is too fast, which congests the From the above analysis, we can see there are several
network and cause®,,., increase by more than 60 ms.obvious faults with the recommended ATP implementation:

Sample of ATP Goodput and Delay over Time (1 flow 3 hops) ATP Delay Trace over Time Sample of ATP Goodput and Delay over Time (1 flow 3 hops)

_s[|—_Aggressive ATP N - - D, e Pt P ——
g AN TR A A ~ X D Barf
SLL YV AW N A NR Y . 0 D {
LN YoA A il g
8 v 5
° 1" ¥ § 6000 [[—_Adaptive ATP]
1 2 4 é * ° 0.0 05 1.0 15 2.0 25 3.0 3.5
Time (. d) E x Time (second)
5 D, 2 s D,
- b, H] e ; i D
8 . ¢ ¢ D, x § = . ¢ 6D,
el f . : i ;. £ - : ¥ # oy
> . : 2, e x £ > PR B £ I S SR
7 100005) LA T o S B T 52000 SRR g Lo g B Dyl e i
B ettt i ke - o RN ek
2 4 0.1 Mnme(SSSSS 2)3 0.4 0. 0.0 0.5 1.0 15 2.0 25 3.0 35
(a) Aggressive ATP delay trace (b) Aggressive ATP Zoomed delay trace (c) Adaptive ATP delay trace

Fig. 7. Goodput and delay traces, aggressive and adapti®e gvigle flow, testbed A

(a) quick-start may not obtain an appropriate sending réte wthan waiting for an epoch:

only one probe, (b) the epoch timeout of 1 second is too large, if the receiver detects two dropped packets,

for a high bitrate network, and (c) the rate increase fagtor , if there are 10 consecutiveincoming packets with

of 0.2 may be ftoo slow, particularly when combined with a Dyae > D, (this indicates the current sending rate is

long epoch period. too fast and is causing some contention in network), and
2) Aggressive ATPTo correct these problems, we explore | if there are 10 consecutiveincoming packets with

using a more aggressive set of parameters for ATP by reducing Dinas < (1 — @) * D, (the sender is going too slowly).

the epoch timeouk to 0.04 second and increasing the rat$Ve choose a threshold of 10 consecutive packets to avoid any

increase factok to 0.5. Referring again to Figure 5, we can | turbul in th work that d ind fal
see that with more prompt feedback, aggressive ATP perfor (hporal turbulence n the network that would induce faise
alarms and oscillation.

better than default ATP by an averageda. The lower half " ,

of Figure 7(a) shows how a faster rate adaption helps A pln add|t|(_)n,_we a_dd a number of hops field, to the ATP

adjust to a poor choice of an initial rate. However, we al eader. This field simply records the number of hops traderse
7

observe that the instantaneous goodput is highly variakite w om Se”def to receiver, similar to the IP TTL field. The .Semqe
(Fan use this total number of hops to better adjust its idle

multiplier (n) at the initiation stage of connection. We use
= 3.0+ 0.5 (h— 1), whereh is the number of hops. The
ata collection portion of ATP updates this field as the packe

these new settings. Furthermore, the more aggressivedekd
does not necessarily mean mgrempt feedback, which is
best illustrated in Figure 7(b). This figure zooms in on th

delay trace and adds an additional set of light blue poin ¢ ded
to indicate when the feedback from the receiver is actual'l§/ orwarded. ,) i
Referring again to Figure 5, we can see that in this same

received by the sender, denotéy, . There is a significant . :
delay for some of these feedback packets, indicating thest thsmgle flow experiment, a_d_aptlve_ ATP perforris’ better

must contend for the channel on the reverse path; note aecluélf'an default ATP. In addition, F'Q‘”e () c_IearIy S_hOWS a
of feedback packets received at 0.15 seconds in the figuig. TRO'® Smooth rate curve for adaptive ATP, which confirms our

clustering occurs because we do not use a priority queue fogOrithm's resilience to small turbulence.
feedback packets.

We experimented with many different settings férand ,
and the results shown here are the best we obtained on Testbdehirness is another important evaluation criteria for ATP
A. It is not guaranteed that these parameters will be bestand our variants. We perform experiments with two and five
all deployments and along all paths. The designers of ARimultaneous flows between the same sender and receiver
realized the potential problems with a fixed epoch timeout pair in Testbed A. Figure 8 shows the results for two flows.

1 second and mention that it needs to be adapted for differ&igure 8(a) shows that adaptive ATP generally achieves the
environments [12]. However, no solution has been providéest average goodput among the variants and TCP. Second,
on how to adapt the epoch to fit different wireless paths. the performance advantage obtained with aggressive ATP

3) Adaptive ATP:To find a better solution for this problem,over default ATP diminishes with increasing path length.
we introduce an adaptive SACK feedback mechanism thHaigure 8 (b) shows a CDF of goodput for 6 hops, verifying the
can adjust the feedback delivery time according to differeperformance advantage of ATP over TCP Tahoe in a multihop
operating situations. Our adaptive version of ATP uses theesh network. Finally, Figure 8(c) uses the same normalized
same settings foF andx as the aggressive ATP, but augmentstandard deviation of goodput, which is introduced in [12]
the receiver to send quicker feedback. For every outgoiag anunfairness indexo calibrate the fairness between the
packet from the sender, ATP inserts the current sending/detavo flows. Smaller values indicate better fairness, with our
Dy in the ATP header as depicted in Figure 2. It then uses thmdified versions of ATP performing much better than default
following rules to send a feedback packet immediately,eathATP and TCP.

B. Multiple Flows

Average Goodput vs. Hops Faimess vs. Hops (smaller value means better faimess)

1, 0.!
[Default ATP - . S— [Default ATP
3500 EEE TCP-Tahoe - : ! 3 EEE TCP-Tahoe
EEE Aggressive ATP 2 i £oa BEE Aggressive ATP
3009 W Adaptive ATP 0. ; W Adaptive ATP
2 h 5
% 2200 o H 203
2 H 2
e o |h : g
§ 2000 5o ' : J g
H H : E
5 1500 . - B {v% 0.2]
g ' 3 : 2
< . 5 2
1000f 025/ 3 = Default ATP 2
' = | == TCP-Tahoe £ 0
500 H AN : +i+ Aggressive ATP 2
H H : 11 Adaptive ATP
3 4 o * 500 1000 1500 2000 00 1 2 3 4 5 6
Number of Hops Goodput (Kbps) Number of Hops
(a) Average Goodput vs. Hops (b) CDF of Average Goodput for 6 hops (c) Fairness
Fig. 8. Two Flows, ATP and our variants, Testbed A
L Average Goodput vs. Hops 5 . Fairness vs. Hops (smaller value means better fairness)
3 Default ATP ,". [Default ATP
Emm TCP-Tahoe N ‘307 mmm TCP-Tahoe
1000 EEE Aggressive ATP B H £ EEE Aggressive ATP
W Adaptive ATP o . Euﬁ W Adaptive ATP
_ ' H E
2 00| Tahoe: » H . 5
g N : Adaptive ATP c
z : 2
ES . H E 2
£ N g
5 600 5o : i é‘;
g a0 : AggressivelATP - | pefault AT g
: o : 3
"
200 E
. 5 20
: :
:
0. L ’_'J 0.0!
3 4 100 200 300 400 500 600 700 1 2 3 4 5 6
Number of Hops Goodput (Kbps) Number of Hops
(a) Average Goodput vs. Hops (b) CDF of Average Goodput for 6 hops (c) Fairness
Fig. 9. Five Flows, ATP and our variants, Testbed A
Average Goodput vs. Hops Average Goodput vs. Hops Average Goodput vs. Hops
[Default ATP [Default ATP [Default ATP
3500 EEE TCP-Tahoe EEm TCP-Tahoe 800 EEm TCP-Tahoe
BB Aggressive ATP 20001 BB Aggressive ATP BB Aggressive ATP
3000 EEE Adaptive ATP EEm Adaptive ATP 700 mm Adaptive ATP

g
8

1500}

2000)

1500 1000f

Average Goodput (Kbps)
Average Goodput (Kbps)
Average Goodput (Kbps)

1000f

3 4
Number of Hops

3 4
Number of Hops

iumbev of HZDS
(a) Single Flow, Multihops (b) Two Flows, Multihops (c) Five Flows, Multihops

Fig. 10. Goodput, ATP and our variants, Testbed B

Figure 9 shows the results for five flows. Default ATRo the sparser distribution of nodes, provides a more reljab
performs surprisingly well in this experiment for flows l@rg stable mesh with lower bandwidth. For brevity, we show only
than one hop, and aggressive ATP fares poorly. This makbe goodput and fairness results with respect to the nunfber o
sense, because conservative rate adjustment should witek bélows.
when the network is more congested. However, our adaptiveFigure 10 shows the goodput for the one, two, and five
version of ATP demonstrates remarkable consistency, afislv experiments. Due to the low bandwidth and better link
generally performs on a par with default ATP, with betteguality, there is not much difference exhibited betweefedif

fairness. ent protocols in the one and two flow scenarios, and TCP’s
) performance is much better. For five flows, TCP outperforms
C. Generality ATP and its variants for paths over three hops long. Aggvessi

To demonstrate the generality of our results, we examifdP generally has the worst goodput among all the tested
ATP’s performance under a significantly different enviremh protocols in this scenario, which further confirms that the
using Testbed B from Figure 4. We configure each mesh noaggressive parameters setting may not be beneficial unider al
to use a bit rate o Mbps and a power ofl7 dBm. The circumstances.
increased transmission power and reduced bitrate, iniaddit Figure 11 shows the fairness results for the same two and

0.25

Fairness vs. Hops (smaller value means better fairness)

& &
128 126 1124
mesh31

N

o

120

&) i
118, ma P
@mesh30 I l
[Default ATP n — \esh2d
m;
Aa [l TCP-Tahoe
£ i (mimisS
S 020 zza Aggre‘sslve ATP 1 y
E EEE Adaptive ATP %snzs 2t me - meshzl n,.'esnzg
£ I imo
5 T .‘ :
S 015 5
s :
< flow 3}
g i mesh19
< 0.10 (el
: meshg N\
3 c
s j
£ 0.05
S
2
0.00

1 2 3 4 5 6
Number of Hops

(a) Two Flows, Multihops

Fairness vs. Hops (smaller value means better fairness)

Fig. 12. Stack Topology Constructed on First Floor Mesh

[Default ATP
EEE TCP-Tahoe
BBl Aggressive ATP
EEm Adaptive ATP

TCP-Tahoe Instantaneous Goodput over Time Default ATP Instantaneous Goodput over Time.

Normalized Standard Deviation of Throughput

) % 30

0
Time (second)

(b) Default ATP

1 2 3 4 5 6
Number of Hops

Adaptive ATP Instantaneous Goodput over Time

(b) Five Flows, Multihops

Fig. 11. Fairness, ATP and our variants, Testbed B

five flow experiments on Testbed B. It is clear that the goodpu “1:i: '
advantage of both TCP and default ATP shown in the previous ™ © * “wi™ 7 7 T e
figure are achieved at the sacrifice of fairness. TCP gegerall (d) Adaptive ATP
exhibits the worst fairness among all those tested. Medawhi))

aggressive ATP generally shows the best faimess over all, 79- 13- Goodput trace, TCP and ATP variants, Stack topology
which suggests that a shorter epoch timeout contributes to

better fairness. It is possible that adaptive ATP should als
try to adjust the epoch time so that it is more fair in thi
situation.

(c) Aggressive ATP

rotocols in how they handle this situation are enlightgnin
ahoe periodically starves the flow in the middle (flow 3),
which validates our topology configuration. Default ATP doe
not perform as badly, but does provide the middle flow with
only 1/5 the throughput of the other two flows. The sawtooth
Our fairness results so far are all for flows that share thgittern in this case is due to the combination of severe penal
same path during experiments. A common stack topologyt a missed feedback packet and ATP’s conservative rate
tests fairness when two flows on the edges of a networgcovery. Both aggressive and adaptive ATP provide much
starve a flow in the middle [22]. The research communityetter goodput for the middle flow, with aggressive ATP takin
has addressed this issue in numerous works [6], [7], [12], [2more bandwidth away from flow 1. Table Il lists the average
with various approaches. To explore ATP’s behavior in thigoodput each flow obtains when all three flows are active with
situation, we construct a stack topology using our first flo@gfansmission. From the channel utilization perspectiahb
nodes, as shown in Figure 12. We run an experiment th@faptive ATP and default ATP achieve better total goodput
starts the flows sequentially, with a 3 second delay betwegiring the contention period, and adaptive ATP provides the

each flow. best utility, as measured by the log of the goodput.
Figure 13 shows the instantaneous goodput of each flow

for different protocols. Since our stack topology does n& Randomized Flows

contain the exact spacing that is often used in simulationsFinally, we perform a series of experiments that mimic the
and mathematical models, we can not estimate the apprepriate of a mesh network. In these experiments, we randomly
fair share for each flow. However, the difference among tlelhoose a set of flows in both the first and second floors of

D. Fairness with Stack Topology

Flow1l Flow?2 Flow 3 Aggreg.

Protocol (kbps) (kbps) (kbps) (kbps) Utility

TCP Tahoe 703 1184 480 2368 8.60

Default ATP 2246 2483 546 5275 9.48

Aggressive ATP 966 1992 951 3909 9.26

Adaptive ATP 2085 2410 875 5369 9.64
TABLE Il

GOODPUTSHARE OF EACH FLOW IN STACK EXPERIMENT

our mesh network, varying the number of simultaneous flows
to impose different loads. We examine two scenarifils:
transfer and streaming For file transfer, we simultaneously 7
initiate a 1 MB file transfer between randomly pairs of nodes e

. s
and then calculate the overall goodput. For streaming, we =
simultaneously initiate a backlogged TCP transfer betwken LT e
randomly chosen pairs and terminate the transmission 36ter (c) Aggressive ATP (d) Adaptive ATP
seconds.

In these experiments, we use the OSLR [21] routing proto-
col, rather than static routing, similar to how a mesh nekwor
would be operated. To obtain longer routes, we reduce th
power to2dBm and use a bit rate df M bps. This provides a
maximum path length of 4 hops in our mesh. We repeat eacl
experiment 10 times with different random flows.

1) File Transfer: Figure 14 shows the CDF of per-flow
measured goodput for different numbers of simultaneous .
flows. We consider any flow with goodput lower thark bps
as starved. Clearly, TCP Tahoe has a greater proportion of (&) Average aggregate goodput (b) Average log utility
starved flows. With 32 flows, Tahoe starves nearly half of
the total flows. All versions of ATP perform very well from
the fairness perspective, with almost no starvation for up
to 8 simultaneous flows. For 32 flows, ATP also has sonfhe CDF of per-flow goodput is similar to the file transfer
starvation, with percentages fro29% to 30%, and adaptive case, so we do not show them here.

ATP performs best among the variations.

We next consider the tradeoff of aggregate goodput and VI. RELATED WORK
faimess for this experiment. For faimess, we use the It tere has been extensive research to improve the perfor-
Wh'c.h IS th_e sum of the I_og of_each TIOV_’S goodput, W't%ance of transport protocols in multihop wireless netwanks
a minor a_djustment to avoid a singularity in the calculation,, |55t decade. However, relatively few fully implemented
Whenl taking the_ Iog O,f a flow’s goodput, any totally Starv,eﬂ'ansport protocols are available, and experimental t®sul
flow yields negative infinity. Thus for starved flows, we assid56 still uncommon. Two TCP alternatives that have been

their goodput to one byte. _implemented are DiffQ [6] and Hop [15]. DiffQ applies the
Figure 15 shows both the aggregate goodput and log utiliffe o retical work of cross-layer optimization and develops
for the file transfer experiments. Tahoe generally obtenes t_ practical backlog-based MAC scheduling algorithm with

best aggregate goodput for the multiple flows runs. HOWeveg, ier assisted backpressure congestion control. Thig wo
this performance is achieved at the cost of overall utiityich

is the lowest of all protocols tested and is zero for 32 flows
due to starvation of some flows. Adaptive ATP has both the
best aggregate goodput among all ATP versions and also tF
highest utility.

2) Streaming:The streaming experiments show drastically
different goodput and utility results than the file transfer :'
experiments. Figure 16(a) shows the aggregate goodput fc :..
the 30 second streaming experiments. Default ATP has muc
better performance here, and fairly good utility. Adap#VeP
performs competitively with the default settings in mostes
but has much better utility as the number of flows increases. Fig. 16. Goodput and fairness, random streaming

))

T00€
Goodput (bps)

Fig. 14. CDF of per-flow goodput, random file transfer

Fig. 15. Goodput and fairness, random file transfer

(a) Average aggregate goodput (b) Average log utility

includes an implementation of ATP, but only the congesf3] A.Aziz, D. Starobinski, P. Thiran, and A. El Fawal, “EZeW: removing

tion control portion of the protocol. Hop builds hop—by—hop turbuﬂlence‘ in IEEE 802.11 wireless mesh networks withoussage
passing,” inACM CoNEXT New York, NY, USA: ACM, 2009, pp.

transport protocol with in-network caching. It use#ocks 73-84.
large segments of contiguous data, instead of packets, apyl M. Heusse, F. Rousseau, R. Guillier, and A. Duda, ‘“Idl@sge an
uses transport-layer reliability to achieve both higheerau optimal access method for high throughput and fairnesste diverse

. . . . wireless LANs,” inACM SIGCOMM New York, NY, USA: ACM,
throughput and robustness with lossy wireless links. Their 5405 50 121-132.

implementation is also done in user space running over UDR] B. Bensaou and Z. Fang, “A fair MAC protocol for IEEE 802-based
Other recent experimental work focuses on the fairess & TC ~ ad hoc networks: Design and implementatioiireless Communica-

. . . tions, IEEE Transactions qwol. 6, no. 8, pp. 2934—2941, August 2007.
in wireless networks, using protocols that allocate rates a [6] A. Warrier, S. Janakiraman, S. Ha, and |. Rhee, “Diffqadtical differ-

work in conjunction with existing TCP protocols [7], [13]. ential backlog congestion control for wireless networks, INFOCOM
Implementing network protocols at the user-level is not_ 2009, IEEE April 2009, pp. 262 —270.

. . . [7] K.-Y. Jang, K. Psounis, and R. Govindan, “Simple yet éffit, trans-
somethlng new to the networklng community [23] [24] [25]' parent airtime allocation for TCP in wireless mesh netwgrks ACM

The comparative advantages of user-level protocol impfeme CoNEXT New York, NY, USA: ACM, 2010, pp. 28:1-28:12.

tation, such as the ease of prototyping and debugging al@ X. Yu, “Improving TCP performance over mobile ad hoc netks by

- . - loiti -l infi ti ‘MobiC New York,
well established. Notable transport protocols includeiddp m’ f}énA% (X&SV? F?r);irs'nz%r&aéoph azgfgﬁsls reom New yor

[26], which provides a framework for user-level network[9] R. de Oliveira and T. Braun, “A dynamic adaptive acknatgement
pl’OtOCOl development in FreeBSD, and Daytona [27]' which strategy for TCP over multihop wireless networks,1HEE INFOCOM

. | t | | TCP stack for Li vol. 3, March 2005, pp. 1863-1874 vol. 3.
Implements a user-leve stack for Linux. [10] S. M. Elrakabawy, A. Klemm, and C. Lindemann, “TCP wittiaptive

pacing for multihop wireless networks,” iMobiHoc New York, NY,
VII. CONCLUSION USA: ACM Press, 2005, pp. 288—299.

In this paper, we present an extensive performance evallid! K. Nahm, A. Helmy, and J. C. C. Kuo, “TCP over multihop 802

. . . . networks: issues and performance enhancement¥abiHoc New
tion of ATP in a wireless mesh testbed. We have examined the York, NY, USA: ACM Press, 2005, pp. 277-287.

performance of ATP as it was designed, with regard to boftp] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and A. Raksimar,
goodput and fairness, and found that its original desigrsdoe “ATP: a reliable transport protocol for ad hoc networks/lobile

not perform as well as shown in earlier simulation result, goggﬁé'cvg];EEEJLr:;s?(ctﬁ”iaﬂg‘)'k“ﬁ?ﬁﬁﬁ{f@ﬁ?&%ﬁﬁ298?_‘

Although it generally outperforms TCP-Tahoe in terms of derstanding congestion control in multi-hop wireless mestworks,”

goodput, especially for the longer paths with lossy links, El/gc“ﬁ,“fgb:_covf\‘/ﬂ New Z"é"‘ZNY' UISAi :%MfAZEOS'prh29r%[;3Or2t-
), e : f . Scofield, L. Wang, an . Zappala, “HxH: op-by-haprtspo

ATP s quick St_art and f!xe_d epoch feed_baCk meCh_amsm n protocol for multi-hop wireless networks,” ifihe Fourth International

improved designs. This is another piece of evidence that wireless Internet Conferenctlov. 2008.

network protocols should be evaluated with both simulatiohl5] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani, S%-switched

: . . . : networks: a new paradigm for wireless transport,”"USENIX NSDI
and an implementation in order to properly validate their Berkeley, CA, USA: USENIX Association, 2009, pp. 423-436.

performance. [16] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C.i&#, “Ex-
Our exploration of a revised design for ATP includes both perimental evaluation of wireless simulation assumptfoins MSWiM

: : : _New York, NY, USA: ACM Press, 2004, pp. 78-82.
using more aggressive parameters and creating a more a ?ﬁ W. Kiess and M. Mauve, “A survey on real-world implemations of

tive feedback mechanism. A more aggressive ATP improves’ mobile ad-hoc networksAd Hoc Networksvol. 5, no. 3, pp. 324-339,
performance in some circumstances, but does not perform as April 2007.

. . . : . 8] “Atheros linux wireless drivers.”” [Onling]. Availabl http:
well with multiple competing flows. Our adaptive design o Minuxwireless, org/en/users/Drivers/athk

ATP demonstrates a good mix of high goodput and fairnesg.g] k. sundaresan, V. Anantharaman, H. Hsieh, and R. Siviaku“ATP:
Due to unfairness at the MAC layer, ATP and our vari- A reliable transport protocol for ad-hoc networks,” ACM MobiHog

; 2003.
ants alone will not solve all the problems encountered ka/o] ‘Minstrel rate control algorithm” [Online]. Avail-

transport protocols in a wireless mesh network. However, wWe" aple: http:/iwireless.kernel.orglen/developers/Doentation/mac80211/
are encouraged that rate-based congestion control has beenRateControl/minstrel

: : ; .] A. Tennesen, T. Lopatic, H. Gredler, B. Petrovitsch, Kaplan, S.-O.
shown to be useful in a wireless setting, and that cross- Ia)Ve1 Ticke et al, “olsrd - an adhoc wireless mesh routing daemon, ”

feedback of delays encountered at the MAC layer can improve [online]. Available: http:/iwww.olsr.org
performance. [22] K. Xu, M. Gerla, L. Qi, and Y. Shu, “Enhancing TCP fairseis ad hoc

: : ; wireless networks using neighborhood red,"NtobiCom New York,
With the help of the WiFu toolkit, we plan to expand our NY, USA: ACM, 2003, pp. 16-28.

experimental evaluations to include more transport p@#oc (23] R. A. Thekkath, T. D. Nguyen, E. Moy, E. D. Lazowska, andv@&mber,

proposed by other researchers. In particular, those wbidis t “Implementing nlftwork protocols at user level,” IBEE/ACM Transac-
) P ; : tions on Networking1993, pp. 64—73.
haven't bee_n e_valuated with |mpIementat|ons and expeﬂlﬂ’]e[}‘” A. Edwards and S. Muir, “Experiences implementing hhpgrformance
are of special interest to us. TCP in user-space SIGCOMM vol. 25, no. 4, pp. 106205, 1995.
[25] E. Kohler and E. Kohler, “The click modular routeACM Transactions
REFERENCES on Computer Systemsol. 18, pp. 263-297, 2000.

[1] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “Tingpact [26] D. Ely, S. Savage, and D. Wetherall,_“AIpine: a userelewnfrastructure
of multihop wireless channel on TCP throughput and loss,IEEE for network protocol development” iUSITS ~ Berkeley, CA, USA:
INFOCOM, vol. 3, 2003, pp. 1744-1753 vol.3. USENIX Association, 2001, p. 15. _

[2] V. Gambiroza, B. Sadeghi, and E. W. Knightly, “End-todeperfor- [27] P. Pradhan, S. Kandula, W. Xu, A. Shaikh, and E. Nahum,
mance and fairness in multihop wireless backhaul netwoiksACM Daytona: A user-level TCP stack” [Online]. Available: tft

MobiCom New York, NY, USA: ACM, 2004, pp. 287—301. /Inms.lcs.mit.edu/kandula/data/daytona.pdf

