Reducing Source Load in BitTorrent

Brian Sanderson and Daniel Zappala
Computer Science Department, Brigham Young University
bsanderson@byu.net, zappala@cs.byu.edu

Abstract— One of the main goals of BitTorrent is to reduce load
on web servers by encouraging clients to share content beter
themselves. However, BitTorrent's current design relies bavily
on the original source to serve a disproportionate amount othe
file. We modify standard BitTorrent software so that a source
determines the current popularity of each of the blocks of a fie
and tries to serve only those blocks that are rare. Using extssive
PlanetLab experiments, we show that this modification can s&
a significant amount of the source’s upload bandwidth, with he
tradeoff of some increased peer download time. In additionthere
are individual experiments that both save bandwidth and hae
a faster download time than standard BitTorrent. We examine
some of the more exceptional experiments, explore alterniae
algorithms, and provide insight for further improvements.

I. INTRODUCTION

a block is held by a significant number of peers, then clients
should get that block from their peers, rather than from the
source. The source then exists primarily to help clients who
can't otherwise find a block and ensures that the file remains
available in the system. This modification helps the sousce t
use significantly less than the configured rate cap when other
peers are available to share the load, and also reduces the
effectiveness of free-riding.

Our BitTorrent modification, which we call thscout in-
cludes two new mechanisms. First, the scout estimates block
diversity, which is the popularity of each of the blocks oé th
file, using information from its directly-connected neiginb
and by probing additional peers. Second, the scout uses an
algorithm to decide which blocks to advertise as available t

BitTorrent has become a very popular peer-to-peer applidg neighbors. Advertising the same rare blocks to all peers
tion, accounting for as much as 80% of the traffic on backbongay not be the best strategy, since giving different blocks
Internet links [1]. One of the keys to this popularity is thato different peers will increase the chance that peers can ge
BitTorrent allows an organization without a lot of bandwidt blocks from each other.

to deliver files to a very large audience. BitTorrent cliestiare

To determine the effectiveness of the scout, we run a series

the content they download, so that some of the load that wowtlexperiments on PlanetLab, isolating the performancéef t
be directed toward a centralized server is instead spretigto source from that of other seeds. Our results vary signifigant

users of the system.

due to the unpredictability of available bandwidth on a glob

An important part of the BitTorrent system is its use of seedsstbed. Averaged over all experiments, with various algo-

to help distribute a file. When an organization wishes toeshatithms and settings, our BitTorrent scout saves about 50% of
a file using BitTorrent, it runs a tracker, which helps peethe source’s upload bandwidth but extends the peer download
locate each other, and an initial seed, which has the enfire time by 2.5 to 3 times. There are individual experiments that
available. Clients contact the tracker to find peers thatimre make better tradeoffs, and some both save bandwidth and have
the system, then contact these peers to find out which blockgaster download time, indicating there is likely room for
they have. Peers download blocks in parallel from both tli@provements. These are encouraging results, considtring
original seed and other peers. Once a peer has downloafts that in our experiment peers leave the system right afte
the entire file, it can itself become a seed. they download the file. In more typical scenarios, peers will
One of the problems with BitTorrent, however, is that thact as seeds and help to maintain good download times even
initial seed, which we call the source, often uploads thghen the source restricts its uploading.
majority of the blocks in the system. BitTorrent provides To provide further insight into what works best, we examine
incentives that encourage peers to share in order to dodnlatifferent advertisement algorithms and find that they sthoul
from each other, but free-riders can download from the souriiclude some degree of randomness to prevent peer starvatio
without having to share any blocks [2]. To alleviate the higive also find that the source’s neighbors provide enough
load on a server, most BitTorrent software allows the usgformation to form a good estimate of block diversity, even
to set a bandwidth limit, which caps the upload rate for thehen the torrent has about 400 active peers. Overall, our
source and the seeds. However, this kind of limit is inflexiblresults indicate that further study may lead to ways to glevi
for an organization. Most sites don’t mind helping a cliemt thetter performance tradeoffs.
download a file quickly when there is no alternative, but wioul
like to limit their upload rate if the file is easily available
elsewhere. In a traditional client-server download, the server can
In this paper, we modify the BitTorrent software to helmuickly expend all its upload bandwidth when it must serve
reduce source load. The key idea of this modification is thatany clients. With BitTorrent, there is greater opportynd
the source should only upload blocks of a file that are rare.dfstribute the load of providing a file among the clients in

II. MOTIVATION

Experiment Source Peer Ratio . . .

No Rate Limi 5579 KB/s | 366 KBis | 8/1 blocks they hold. Typ|cglly, a source a(jvertlses tr_lgt it has

75 KB/s Rate Limit| 52 KB/s | 26 KB/s | 2/1 all of the blocks of the file. Our scout simply modifies this
TABLE | advertisement so that it only includes those blocks that it

considers to be rare. Later, a source may send an update
with additional advertised blocks, but it cannot take bank a
advertisement once it has been made.

SOURCE VERSUS PEER UPLOAD RATE

the system. However, the tendency of BitTorrent is to hgaviﬁ' Estimating Block Diversity
utilize the upload bandwidth of the source, with the peersIn the standard BitTorrent implementation, any peer can
playing a secondary role. Ideally, the source should uplog@nnect to the source at any time. We call the current set of
little to nothing if block diversity is high and shouldn’t lgad connected peers the sourcesighbors Based on the blocks
significantly more than the peers in the system. that neighbors advertise to the source, the scout can form
To illustrate the unfairness that can occur with BitTorren@n initial estimate of the block diversity. It then improves
we conducted several experiments on PlanetLab. We crealleig estimate by periodically connecting to additional nsge
a torrent for a 200 MB file, hosted on a PlanetLab machidistening to their advertisement (which is less than 10@g)yt
with a high-speed Internet connection. We then had as ma#yd then disconnecting.
PlanetLab hosts as possible join this torrent over a 30 minut The scout must balance its desire to have a more accurate
period, typically getting about 300 to 400 hosts partidipgt estimate of block diversity with the amount of bandwidth
Hosts take anywhere from 2 to 24 hours to download tfieconsumes. The more frequently the scout polls additional
file. In the first set of experiments, we did not configurgeers, the more accurately it can estimate block diversity.
BitTorrent with a rate limit, allowing peers to download fino However, if the scout probes neighbors too frequently, it ca
the source or peers as fast as they could, and peers lingegge@sume a significant portion of bandwidth, which would
for 5 minutes after they finished their download. In the secorflefeat the purpose of the solution. Accordingly, the sceut i
set of experiments we set a rate limit of 75 KB/s on both tH#nited to contactingr peers per minute. Our experiments
source and the peers, and the peers left the system immigdiag@mpare different values efand their effectiveness at estimat-
after finishing the download. ing the actual block diversity, as well as the saved bandwidt
Based on these experiments, it is clear that the source ofegncompared to the original source implementation.
uploads far more than the peers. Table | shows that the sourcéo track block diversity, the scout uses an indexed queue to
upload rate is 8 times higher than the peers without ragtore peer advertisements that it has collected. Each éntry
limiting, and twice as high with rate limiting. This occursthe queue contains the peer identifier for the peer contacted
because a BitTorrent source serves blocks to the peers vih® list of blocks the peer advertised as available, and the
have demonstrated they have the highest download rates. Tthinestamp of the last time the peer was contacted. The queue
policy is intended to spread the distribution of the file ais sorted by this timestamp, so that the oldest informaton i
quickly as possible, so that these fast peers can share ¢hedflthe front of the queue. Entries are expired from the head of
with others. However, it also leads to the source using peathe queue when their timestamp is 20 minutes old.
as much bandwidth as it is allowed. Our goal is to reduce theThe scout adds entries to the advertisement queue in one of
amount the source uploads by not distributing content thattwo ways. First, any time a neighbor sends an advertisement,

readily available elsewhere. or updates its advertisement, the scout adds or updates the
entry for that peer. Second, the scout probesew peers per
l1l. BITTORRENT SCOUT minute, using a list obtained by contacting the tracker.dthb

We implement a BitTorrent scout that reduces source loadses, the peer may already have an entry in the queue, so we
by only serving blocks that it considers to be rare. The gbal update that entry as needed. If a peer becomes unreachable,
this system is to encourage clients to download blocks frowe remove its information from the queue.
other peers whenever possible, so that the source can save itJsing the advertisement queue, the scout estimates the
bandwidth for those blocks that few peers have available. diversity of each block asc;/n, wherec; is equal to the

To perform this function, the scout tries to estimate theumber of peers in the queue that have that block ans
diversity of each block, which is defined as the number #ie total number of peers in the queue.
peers holding a block divided by the total number of activ
peers. A block diversity of.0 means that all active peers hol
that block. Because both the numbers of active peers and th¥Vhenever a new neighbor connects to the scout, it chooses
blocks they hold may vary rapidly, the scout samples thegpeér set of blocks to advertise to that neighbor. We implement
to get an estimate of block diversity. the following selection strategies:

To control which blocks a peer may download, the sources less thank: The source selects every bloekwhere
determines which blocks it will advertise at the start of a ¢;/n < k. In our experiments, we use = 0.4, which
connection with a peer. In BitTorrent, each time two peers means that the source will advertise the rarest 40% of
connect to each other, they exchange a bitmap that lists the blocks to peers.

. Advertising Blocks

« probabilistic: The source chooses a uniform randoravents. To correlate events across all of the peers, we use
number in the range 0 to 1 for each block, and SNTP to determine the offset of the local clock relative to an
advertises that block if this number is greater thgMm. NTP server, then factor this offset into the timestamp inheac
This increases the chance that different neighbors aressage log. This method allows us to align logs on different
given different sets of blocks. peers with minute-level accuracy, despite significantichrift

« shuffle rare:The source creates a unique ordering of then PlanetLab, and is sufficient for our purposes.
blocks for each neighbor, based on the peer’s identifier To run an experiment, we have as many PlanetLab hosts as
and IP address. For each neighbor, the source selectsghssible join the torrent over a 30 minute period, typicgky-
first 2z blocks in this set, where is the number of blocks ting about 300 to 400 hosts participating. Hosts take anyavhe
held by less than 40% of the peers. The source th&om 2 to 24 hours to download the file. We terminate the
advertises the rarest blocks in the set. This algorithm experiment once 95% of the hosts have downloaded the file,
is also designed to give different neighbors different sesince some hosts experience persistent connectivity bl
of blocks. and others transfer at rates less than 2 KB/s. All together, t

« random: The source chooses a random setzdflocks time to prepare, run and collect data for an experiment takes
to advertise. This strategy is used as a comparison, @bout two full days. We ran a total of 63 experiments over a
verify that more intelligent strategies do indeed have ame year period, logging 350 GB of messages and consuming
advantage. 150 TB of BYU'’s upload bandwidth.

To prevent starvation in all algorithms, we periodically The results we present here are taken from 63 experiments,

repeat this process and advertise any newly-selected $lo¥Rrying the advertisement algorithm andhe number of peers

in an update message to the current neighbors. probed per minute. We varyfrom 0 to 20, in increments of 5,
and run one experiment for each value with each advertisemen
IV. METHODOLOGY algorithm. We then repeat the most promising experiments

We use PlanetLab to run experiments with the BitTorrenfp to 8 times. We also run 5 experiments with the standard
scout and compare its performance to a standard BitTorr@itTorrent implementation. To avoid biasing one variation
implementation. We chose to run a measurement study ratbeer another, we randomize the times they run, so that each
than a simulation of BitTorrent, so that we can have higheariation has an equal chance at running in different weeks
confidence that our enhancements will work in practice, widluring the year.
official BitTorrent source code and live TCP streams. While
PlanetLab hosts do not perfectly model home users, they do
have geographical diversity and different service prordde Our experiments vary greatly from run to run, even among
traffic policies, and available bandwidth; PlanetLab igently experiments with identical settings. The main reason far th
our best estimate of “reality” when running a controlleds that network configurations, background traffic, and com-
experiment. A downside of using PlanetLab for a measuremgugting PlanetLab experiments all change from day to day and
study is that it introduces a high amount of variance, dudé¢o tmonth to month. There is also variability with any BitTorten
heterogeneity of the hosts and networks we use. This makksvnload, since performance depends on which peers a client
it difficult to obtain repeatable and consistent results. connects to, the connection quality between peers, thek®loc

For the set experiments we report here, we use BitTorrghe peers have available, and whether those peers allow the
4.0 [3] to distribute a 200 MB file, hosted on a server at BYUdlient to download from them. The scout introduces addéion
with a 100 Mbps Internet connection, with no peer-to-peariability since it decides which blocks the source adsest
throttling by the BYU routers. Distributing a file much largeto each peer.
than this exceeds PlanetLab’s byte limits, resulting iretat When using the scout, there is a general trade-off between
limiting that would invalidate our experiments. We configurupload amount and download time. Figure 1 plots the results
BitTorrent to limit the upload rate of all peers to 75 KB/s, t@f each experiment configuration, showing the amount of
avoid disruptions to the hosting sites. Some peers uploaddata uploaded by the source over the entire experiment and
much lower rates, based on connectivity or site limits. the average peer download time. Each point on the graph

Our experiments are designed to gauge how effective ttepresents a single 24-hour experiment — the color of a point
scout can be at the start of a torrent, when load is highestpresents the algorithm and the shape represents theofalue
Accordingly, we configure all peers to leave the system asThe standard BitTorrent implementation is shown in green.
soon as they have downloaded the file. This prevents any peerl is immediately apparent that the scout enhancements do
from becoming seeds, creating a worst-case scenario fdr loaduce source load. There are many experiments in which the
on the source. The performance of the scout will thus likelgource uploads less than 1 GB total, meaning it uploads the
be better than what we report here, since seeds will provifile under 5 times to serve about 400 nodes. In general the
extra capacity and offload some of the burden from the sourceore the source reduces the amount of uploaded bytes, the

To measure the performance of the BitTorrent software atahger peers take to download the file. The penalty for cgttin
our modifications, we modify BitTorrent to record all messsig the source’s uploaded bytes in half is that we increase the
exchanged between peers in the swarm, as well as pertineverage peer upload time by about 2.5 to 3 times. Given this

V. RESULTS

T T T T T 1
[m Probabilistc e r=15 [B =
4 [® lessThanK m r=10 i — Probabilistic, r=0]
L m Shuffie Rare 4 =0 0.8 Shuffle Rare, r=0 7]
o R Random v =5] Less Than K, r=5 |
Q - Std BT + =20
= = 1 Std BT
Z3F + . N gos —— SWBT]
38 [* L g
£ 4 ® am - ®n g
_‘; ax " e I 04 _
g2 a ° B
e} a n N
o + v
=) a a v 0.2 |5 T
1 - AN aa B 4
v oa * a . i]
R 0 S TS S SR NS S S S SRS S
1 . . | . . 1 . 1 0 10 20 30 40 50
2 4 6 8 % blocks peers obtained from seed

Average peer download time (hours)
Fig. 2. Interesting experiments: CDF of source dependence
Fig. 1. Overall experiment results

trade-off, it is difficult to say which point on the spectrum 08| __ Shuffle Rare, 10
is best. To a content-distributor the upload amount may be r J ; e]
most importance, while to the peers a small download time is § *°f - ; st]

— — Probabilistic, =0

Frequency

the most important. The slope of the trade-off line will like 0al
depend on peer lingering time; in these results, peers do not Eo
linger at all once they finish the download. We plan additiona °2[

experiments to examine this effect. ok]
There are some notable exceptions to this tradeoff. Experi- o e T T T e T T,
ments withr = 0, meaning the scout did not probe additional Download time (hours)

peers, often do better than standard BitTorrent, both imger
of upload amount as well as download time. These include
the probabilistic (blue upward triangles)less than K(red
upward triangles), anghuffle rare(black upward triangles), s : - -

all on the left-hand side of the graph. The scout, in this ca tge left-most experiment in Figure $huffle rare,r = 0, the

is still advertising only rare blocks, but is computing ttoc ottqm-most experlmentm_the same f|g.UBes;s than Ky =5,
. . : . X o the right-most experiment in the figure; and the bottom-most
diversity using only the information from its directly coseted

. and right-most standard BitTorrent experiments.
neighbors.

There are several reasons why no additional probing jsFor these]:\k/ﬁ ell(perimentls), F_igfure ZhShOWS a CDdF of the
needed for good performance in our experiments. First,pﬁrcentageo ocks peers obtain from the source and Fjure

BitTorrent client connects to every peer it is given by tha1oWs the CDF of the peer download time. Tvebabilistic

tracker, typically about 80 peers. As a result, many peeds eqgorithm with = 0 performs §|m|lar to the two standard
up being directly connected to the source. Although only BdltTorrent experiments, with 80% of the peers downloading
few of these download from the source at the same ti % to 4% fewer blocks from the source, without increasing
each connection sends messages to the source informin g nload time. The other two experiments have significantly
when blocks have been obtained. In our experiments, as m rent performance.)

as 100 peers have been directly connected to the source at/ith shuffle rareandr = 0, the source gives most peers
one time, meaning the source has complete and up-to-d4&er than 2% of the blocks, forcing them to get the rest from
knowledge of the block diversity for 25% of the peers itheir peers. While the 80th percentile is about the sameeas th

the system. A probe from the scout is more uncertain tharfPB0Ve experiments, nearly all peers take 5 hours to download
direct connection, because with a probe the scout only mbtafn€ file, rather than allowing some peers to download more
a snapshot of the peer’s available blocks. Thus with vefickly. This approach appears to penalize the faster peers
complete information from neighbors, probing may actuallji@king them download from the slower peers.

worsen the scout’s estimate of block diversity. It is posib With the experiment usingss than Kandr = 5, the source

that probing may only help when there are very large numbétyes out more blocks thashuffle rare but peers take 8 to
of active peers. 9 hours to download the file. In this experiment, there were

) . many peers who were in endgame mode for hours, waiting for
A. Understanding the Exceptions one last block to be made available to them. The source had
We picked a few of the exceptional experiments to trgiven this block to some peers, so it no longer considered it
to understand why they do not follow the general trendp be rare, but the peers that had this “valuable” block were
performing either exceptionally well or exceptionally plyo either very slow or had connection problems with other peers
We chose five such experiments, which will be referenced @nce the slow peers with the valuable block finished and left
the following discussion. These inclugeobabilistic,» = 0, the system, the scout discovered that this block was extyeme

Fig. 3. Interesting experiments: CDF of peer download time

—_— o

==]m

s —

Source upload amount (GB)
Source upload amount (GB)

_ _ ' | | —_
—_

—_ —_

Less than K Probabilistic Random Shuffle Rare Standard BT 0 5 10 15 20 Standard BT
Advertisement algorithm r (Peers pinged per minute)
(a) Bytes uploaded by the source (a) Bytes uploaded by source
8 8 o
8 o o 3
o
&7 § g o o &7 g g 8 o}
g o g °© o 3] o
0 . 8 8 o 8
o _| o o
g ¥ g o : B g ¥ g o o B
g o ; g e : ;
g o 8 g o
3 i 3
o o
£ 2 E £ 2 1 : ‘
a i a | ' " |
o E _— = —— ! o V= = : ‘
e~ T T T T T e~ T T T T T T
Less than K Probabilistic Random Shuffle Rare Std. BT 0 5 10 15 20 Std. BT
Advertisement algorithm 1 (Peers pinged per minute)
(b) Peer download time (b) Peer download time
Fig. 4. Algorithm Comparison Fig. 5. Probing Comparison

rare and gave it out, allowing the other peers to finish.) _

Returning to Figure 1, it is clear thétss than Khas the gpprommgte_ly douples. The per.formance of all the algarith
majority of the worst performances. This indicates how impoIS velry slmllar,fwnhh a very tﬁht bc;lundhon the averag(;,\)
tant it is to include some randomness in block advertisemenqown oad time for the peers. Note that there appear to be
The less than Kalgorithm advertises a very similar block se{fl lot of outliers, but th_'s is because there are about_ 40_0_Cspee
to peers that connect in close intervals. Tgrebabilistic and ror each %f the algorlthn:js. TTe ZC(.)Ut cioes not significantly
shuffle rarealgorithms tend to avoid this problem. Increase the worst-case download time for peers.

_ _ _ _ Figure 5 compares different probing frequencies using the

B. Comparing Algorithms and Probing Frequencies same metrics. The experiments withequal to 0 or 5 peers

To better compare the effect of different advertisemeRE Minute result in much greater bandwidth savings — about
algorithms and probing frequencies, we combine the reséilts75%. In terms of download time, the experiments with
several experiments. To compare algorithms, we combine @fjual to 0 have a 25% quartile that is much lower than when
the experiments for the same algorithm, regardless ahd to probing takes place. This means that 25% of all peers that use
compare probing frequencies we combine all the experimefits= 0 finish in the same average time as downloads that used
for the same, regardless of the algorithm. We then summarizZgandard BitTorrent, while simultaneously saving 50% & th
the results using a box plot with the standard five-numb&@urce’s bandwidth.
summary. The box is drawn using the lower 25% quartile, Probing more peers actually increases the amount the source
median, and upper 75% quartile, and the whiskers represaptoads, though it is still less than standard BitTorrenhile/
the minimum and maximum of all data within 1.5 box-lengthsounter-intuitive, we believe this occurs because probengs
from the 25% quartile and 75% quartile. Any data values thad contact peers only a few times during the entire experimen
are outside the whiskers are outliers. The information from each probed peer is out of date relative

Figure 4 compares the algorithms based on the bytesthe source’s neighbors, which send updates constantly, a
uploaded by the source and the peer download time. All tfese peers thus seem to have many fewer blocks than they
the algorithms are able to decrease the median load on thkelly do. Thus the more probing that occurs, the source’s
source by about 40% to 50%, while the median upload tinestimate of block diversity becomes less accurate.

The smart seed algorithm has a seed decide which block to
give out by examining the blocks needed by the peer and
choosing the one the seed has served the least [6]. This
results in the seed serving fewer redundant blocks, however
this modification is not compatible with existing BitTorten
implementations. Finally, the Slurpie peer-to-peer systas
several mechanisms that allow it to control the load on a
central server regardless of the number of active peers [7].

R-Correlation
o
T
1

0 20000 40000 60000 80000 VII. C ONCLUSION

Time (seconds)
This work shows that it is possible to reduce the source’s up-
Fig. 6. Accuracy of block diversity estimatprobabilistic r = 0 load bandwidth by modifying the source to selectively adver
tise blocks based on their popularity. Saving source baditiwi
typically results in longer peer download times. Howevar, i
our best experiments the scout can reduce the source’sduploa
We next examine how accurately the source is able to esfandwidth by 75%, while only doubling download time. This
mate block diversity. We focus on thgobabilistic algorithm is an encouraging result, since none of the peers in our
with » = 0 to verify that directly connected neighbors arexperiments act as seeds once they download the file. Having
enough to produce an accurate estimate in our experimenisers act as seeds, as is common with BitTorrent, will img@rov
To correlate the data across peers, we align the logs bage#formance by providing additional upload capacity tseff
on their timestamps, which were roughly synchronized witlive reductions by the scout. Our experiments also showtibat t
SNTP. We then use the detailed peer trace to compute theddvertisement algorithm should include some randomness, t
correlation between the estimate and the actual diversity o avoid starvation, and that a source’s neighbors provideaa go
time. R-Correlation values range from 1.0 to -1.0, where ldtimate of block diversity for moderate numbers of peers.
indicates exact correlation, 0.0 indicates no correlatemd There are a number of areas for future work. First, it is
-1.0 indicates an inverted correlation between two dats. setpossible that we are being too aggressive in our attempts to
Figure 6 shows a strong correlation between the estimatzluce source load. We plan to focus mobabilisticand try
and the actual block diversity for thgrobabilistic algorithm different probability distributions to improve the penfaance
in this experiment. This shows that the directly connecterhdeoff. Another way to improve download time is to treat
neighbors provide enough data for a group of 400 peers. peers differently when they are close to finishing. By giving
a peer the final blocks it needs, the source should be able to
VI. RELATED WORK avoid difficulties that arise when peers are waiting for acklo

The super-seeding algorithm also tries to reduce the lot@t is only held by slow or poorly-connected peers.
on a BitTorrent source, but with a different method [4]. With We also want to address some of the limitations of our
super-seeding, the source acts as if it does not have angshlogheasurement study. We plan to run experiments where we
then as clients connect it tells them it has acquired onekblo@dd lingering time, so that there are additional seeds durin
The source will not inform a peer of any other blocks untiihe swarm, and to compare our performance directly to super-
it can confirm that this block has been delivered to at leasg¢eding. We are also planning to run simulations using the
one other peer. Experiments on PlanetLab show this can s&geut, so that we can examine performance in a more con-
20% of the source’s bandwidth, with little effect on the ater trolled environment and so that we can determine whether
time it takes for 90% of the peers to finish downloading therobing becomes valuable for much larger numbers of peers.
file. In this work, peers act as seeds after downloading the fil
which provides a significantly different testing scenatart _
our work. If the source uploads less, there are plenty ofrotHél ?gra'e'gh' S. Moon, B. Lyles, C. Cotton, M. Khan, D. MdR. Rockel,
. Seely, and C. Diot, “Packet-level traffic measurementsnfthe Sprint
peers with the entire file that can help out, particularly@®nc |p packbone,"EEE Network vol. 17, pp. 6-16, November 2003.
the experiment has been running for a while. As comparé&d ;\l IFiogkgst, R.tNeI?_ttJ)QJ -Eip@?réo%%d L. Zhang, “Explaii bittorrent
to super-seeding, the scout only shares blocks that arg tr éfrcl(’)?]e(n"*“gi(t’tofrrgn't’,,' h't’:p://WWW_bitto'rrem_com.
rare, and thus can reduce source load even further. Adeltiofy] z. chen, Y. Chen, C. Lin, V. Nivargi, and P. Cao, “Experintal analysis
experiments are needed to determine whether the scout carpf super-seeding in bittorrent,” ifEEE Communications2008.
effectively push load onto other seeds as with super-sgedif?! Ff Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T. Badesi A. Zhang,
.) . . mproving traffic locality in Bittorrent via biased neigbb selection,
Several other projects seek to improve BitTorrent in ways |CDCS 2006 February 2006.
that are complementary to our work. Bindal et al. improve€] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Ariatyzand
the efficiency of BitTorrent by modifying the tracker so that Hg&"_‘.’;gﬁ’;&g%gm affgf%“aghce' Microsoft Researchechi. Rep.
it gives clients a list of other peers that use the same I$® R. Sherwood and R. Braud, “Slurpie: A cooperative bulkad&ansfer
[5]. This ensures that most of the peer-to-peer traffic stays protocol” in INFOCOM 2004.

within the ISP, which saves outgoing bandwidth for that ISP.

C. Block Diversity Estimate

REFERENCES

