
Reducing Source Load in BitTorrent
Brian Sanderson and Daniel Zappala

Computer Science Department, Brigham Young University
bsanderson@byu.net, zappala@cs.byu.edu

Abstract— One of the main goals of BitTorrent is to reduce load
on web servers by encouraging clients to share content between
themselves. However, BitTorrent’s current design relies heavily
on the original source to serve a disproportionate amount ofthe
file. We modify standard BitTorrent software so that a source
determines the current popularity of each of the blocks of a file
and tries to serve only those blocks that are rare. Using extensive
PlanetLab experiments, we show that this modification can save
a significant amount of the source’s upload bandwidth, with the
tradeoff of some increased peer download time. In addition,there
are individual experiments that both save bandwidth and have
a faster download time than standard BitTorrent. We examine
some of the more exceptional experiments, explore alternative
algorithms, and provide insight for further improvements.

I. I NTRODUCTION

BitTorrent has become a very popular peer-to-peer applica-
tion, accounting for as much as 80% of the traffic on backbone
Internet links [1]. One of the keys to this popularity is that
BitTorrent allows an organization without a lot of bandwidth
to deliver files to a very large audience. BitTorrent clientsshare
the content they download, so that some of the load that would
be directed toward a centralized server is instead spread tothe
users of the system.

An important part of the BitTorrent system is its use of seeds
to help distribute a file. When an organization wishes to share
a file using BitTorrent, it runs a tracker, which helps peers
locate each other, and an initial seed, which has the entire file
available. Clients contact the tracker to find peers that arein
the system, then contact these peers to find out which blocks
they have. Peers download blocks in parallel from both the
original seed and other peers. Once a peer has downloaded
the entire file, it can itself become a seed.

One of the problems with BitTorrent, however, is that the
initial seed, which we call the source, often uploads the
majority of the blocks in the system. BitTorrent provides
incentives that encourage peers to share in order to download
from each other, but free-riders can download from the source
without having to share any blocks [2]. To alleviate the high
load on a server, most BitTorrent software allows the user
to set a bandwidth limit, which caps the upload rate for the
source and the seeds. However, this kind of limit is inflexible
for an organization. Most sites don’t mind helping a client to
download a file quickly when there is no alternative, but would
like to limit their upload rate if the file is easily available
elsewhere.

In this paper, we modify the BitTorrent software to help
reduce source load. The key idea of this modification is that
the source should only upload blocks of a file that are rare. If

a block is held by a significant number of peers, then clients
should get that block from their peers, rather than from the
source. The source then exists primarily to help clients who
can’t otherwise find a block and ensures that the file remains
available in the system. This modification helps the source to
use significantly less than the configured rate cap when other
peers are available to share the load, and also reduces the
effectiveness of free-riding.

Our BitTorrent modification, which we call thescout, in-
cludes two new mechanisms. First, the scout estimates block
diversity, which is the popularity of each of the blocks of the
file, using information from its directly-connected neighbors
and by probing additional peers. Second, the scout uses an
algorithm to decide which blocks to advertise as available to
its neighbors. Advertising the same rare blocks to all peers
may not be the best strategy, since giving different blocks
to different peers will increase the chance that peers can get
blocks from each other.

To determine the effectiveness of the scout, we run a series
of experiments on PlanetLab, isolating the performance of the
source from that of other seeds. Our results vary significantly,
due to the unpredictability of available bandwidth on a global
testbed. Averaged over all experiments, with various algo-
rithms and settings, our BitTorrent scout saves about 50% of
the source’s upload bandwidth but extends the peer download
time by 2.5 to 3 times. There are individual experiments that
make better tradeoffs, and some both save bandwidth and have
a faster download time, indicating there is likely room for
improvements. These are encouraging results, consideringthe
fact that in our experiment peers leave the system right after
they download the file. In more typical scenarios, peers will
act as seeds and help to maintain good download times even
when the source restricts its uploading.

To provide further insight into what works best, we examine
different advertisement algorithms and find that they should
include some degree of randomness to prevent peer starvation.
We also find that the source’s neighbors provide enough
information to form a good estimate of block diversity, even
when the torrent has about 400 active peers. Overall, our
results indicate that further study may lead to ways to provide
better performance tradeoffs.

II. M OTIVATION

In a traditional client-server download, the server can
quickly expend all its upload bandwidth when it must serve
many clients. With BitTorrent, there is greater opportunity to
distribute the load of providing a file among the clients in



Experiment Source Peer Ratio
No Rate Limit 2979 KB/s 366 KB/s 8/1
75 KB/s Rate Limit 52 KB/s 26 KB/s 2/1

TABLE I

SOURCE VERSUS PEER UPLOAD RATE

the system. However, the tendency of BitTorrent is to heavily
utilize the upload bandwidth of the source, with the peers
playing a secondary role. Ideally, the source should upload
little to nothing if block diversity is high and shouldn’t upload
significantly more than the peers in the system.

To illustrate the unfairness that can occur with BitTorrent,
we conducted several experiments on PlanetLab. We created
a torrent for a 200 MB file, hosted on a PlanetLab machine
with a high-speed Internet connection. We then had as many
PlanetLab hosts as possible join this torrent over a 30 minute
period, typically getting about 300 to 400 hosts participating.
Hosts take anywhere from 2 to 24 hours to download the
file. In the first set of experiments, we did not configure
BitTorrent with a rate limit, allowing peers to download from
the source or peers as fast as they could, and peers lingered
for 5 minutes after they finished their download. In the second
set of experiments we set a rate limit of 75 KB/s on both the
source and the peers, and the peers left the system immediately
after finishing the download.

Based on these experiments, it is clear that the source often
uploads far more than the peers. Table I shows that the source
upload rate is 8 times higher than the peers without rate
limiting, and twice as high with rate limiting. This occurs
because a BitTorrent source serves blocks to the peers who
have demonstrated they have the highest download rates. This
policy is intended to spread the distribution of the file as
quickly as possible, so that these fast peers can share the file
with others. However, it also leads to the source using nearly
as much bandwidth as it is allowed. Our goal is to reduce the
amount the source uploads by not distributing content that is
readily available elsewhere.

III. B ITTORRENT SCOUT

We implement a BitTorrent scout that reduces source load
by only serving blocks that it considers to be rare. The goal of
this system is to encourage clients to download blocks from
other peers whenever possible, so that the source can save its
bandwidth for those blocks that few peers have available.

To perform this function, the scout tries to estimate the
diversity of each block, which is defined as the number of
peers holding a block divided by the total number of active
peers. A block diversity of1.0 means that all active peers hold
that block. Because both the numbers of active peers and the
blocks they hold may vary rapidly, the scout samples the peers
to get an estimate of block diversity.

To control which blocks a peer may download, the source
determines which blocks it will advertise at the start of a
connection with a peer. In BitTorrent, each time two peers
connect to each other, they exchange a bitmap that lists the

blocks they hold. Typically, a source advertises that it has
all of the blocks of the file. Our scout simply modifies this
advertisement so that it only includes those blocks that it
considers to be rare. Later, a source may send an update
with additional advertised blocks, but it cannot take back an
advertisement once it has been made.

A. Estimating Block Diversity

In the standard BitTorrent implementation, any peer can
connect to the source at any time. We call the current set of
connected peers the source’sneighbors. Based on the blocks
that neighbors advertise to the source, the scout can form
an initial estimate of the block diversity. It then improves
this estimate by periodically connecting to additional peers,
listening to their advertisement (which is less than 100 bytes),
and then disconnecting.

The scout must balance its desire to have a more accurate
estimate of block diversity with the amount of bandwidth
it consumes. The more frequently the scout polls additional
peers, the more accurately it can estimate block diversity.
However, if the scout probes neighbors too frequently, it can
consume a significant portion of bandwidth, which would
defeat the purpose of the solution. Accordingly, the scout is
limited to contactingr peers per minute. Our experiments
compare different values ofr and their effectiveness at estimat-
ing the actual block diversity, as well as the saved bandwidth
as compared to the original source implementation.

To track block diversity, the scout uses an indexed queue to
store peer advertisements that it has collected. Each entryin
the queue contains the peer identifier for the peer contacted,
the list of blocks the peer advertised as available, and the
timestamp of the last time the peer was contacted. The queue
is sorted by this timestamp, so that the oldest information is
at the front of the queue. Entries are expired from the head of
the queue when their timestamp is 20 minutes old.

The scout adds entries to the advertisement queue in one of
two ways. First, any time a neighbor sends an advertisement,
or updates its advertisement, the scout adds or updates the
entry for that peer. Second, the scout probesr new peers per
minute, using a list obtained by contacting the tracker. In both
cases, the peer may already have an entry in the queue, so we
update that entry as needed. If a peer becomes unreachable,
we remove its information from the queue.

Using the advertisement queue, the scout estimates the
diversity of each blocki as ci/n, where ci is equal to the
number of peers in the queue that have that block andn is
the total number of peers in the queue.

B. Advertising Blocks

Whenever a new neighbor connects to the scout, it chooses
a set of blocks to advertise to that neighbor. We implement
the following selection strategies:

• less thank: The source selects every blocki where
ci/n < k. In our experiments, we usek = 0.4, which
means that the source will advertise the rarest 40% of
blocks to peers.



• probabilistic: The source chooses a uniform random
number in the range 0 to 1 for each block,i, and
advertises that block if this number is greater thanci/n.
This increases the chance that different neighbors are
given different sets of blocks.

• shuffle rare:The source creates a unique ordering of the
blocks for each neighbor, based on the peer’s identifier
and IP address. For each neighbor, the source selects the
first 2z blocks in this set, wherez is the number of blocks
held by less than 40% of the peers. The source then
advertises the rarestz blocks in the set. This algorithm
is also designed to give different neighbors different sets
of blocks.

• random: The source chooses a random set ofz blocks
to advertise. This strategy is used as a comparison, to
verify that more intelligent strategies do indeed have an
advantage.

To prevent starvation in all algorithms, we periodically
repeat this process and advertise any newly-selected blocks
in an update message to the current neighbors.

IV. M ETHODOLOGY

We use PlanetLab to run experiments with the BitTorrent
scout and compare its performance to a standard BitTorrent
implementation. We chose to run a measurement study rather
than a simulation of BitTorrent, so that we can have higher
confidence that our enhancements will work in practice, with
official BitTorrent source code and live TCP streams. While
PlanetLab hosts do not perfectly model home users, they do
have geographical diversity and different service providers,
traffic policies, and available bandwidth; PlanetLab is currently
our best estimate of “reality” when running a controlled
experiment. A downside of using PlanetLab for a measurement
study is that it introduces a high amount of variance, due to the
heterogeneity of the hosts and networks we use. This makes
it difficult to obtain repeatable and consistent results.

For the set experiments we report here, we use BitTorrent
4.0 [3] to distribute a 200 MB file, hosted on a server at BYU
with a 100 Mbps Internet connection, with no peer-to-peer
throttling by the BYU routers. Distributing a file much larger
than this exceeds PlanetLab’s byte limits, resulting in rate-
limiting that would invalidate our experiments. We configure
BitTorrent to limit the upload rate of all peers to 75 KB/s, to
avoid disruptions to the hosting sites. Some peers upload at
much lower rates, based on connectivity or site limits.

Our experiments are designed to gauge how effective the
scout can be at the start of a torrent, when load is highest.
Accordingly, we configure all peers to leave the system as
soon as they have downloaded the file. This prevents any peers
from becoming seeds, creating a worst-case scenario for load
on the source. The performance of the scout will thus likely
be better than what we report here, since seeds will provide
extra capacity and offload some of the burden from the source.

To measure the performance of the BitTorrent software and
our modifications, we modify BitTorrent to record all messages
exchanged between peers in the swarm, as well as pertinent

events. To correlate events across all of the peers, we use
SNTP to determine the offset of the local clock relative to an
NTP server, then factor this offset into the timestamp in each
message log. This method allows us to align logs on different
peers with minute-level accuracy, despite significant clock drift
on PlanetLab, and is sufficient for our purposes.

To run an experiment, we have as many PlanetLab hosts as
possible join the torrent over a 30 minute period, typicallyget-
ting about 300 to 400 hosts participating. Hosts take anywhere
from 2 to 24 hours to download the file. We terminate the
experiment once 95% of the hosts have downloaded the file,
since some hosts experience persistent connectivity problems
and others transfer at rates less than 2 KB/s. All together, the
time to prepare, run and collect data for an experiment takes
about two full days. We ran a total of 63 experiments over a
one year period, logging 350 GB of messages and consuming
150 TB of BYU’s upload bandwidth.

The results we present here are taken from 63 experiments,
varying the advertisement algorithm andr, the number of peers
probed per minute. We varyr from 0 to 20, in increments of 5,
and run one experiment for each value with each advertisement
algorithm. We then repeat the most promising experiments
up to 8 times. We also run 5 experiments with the standard
BitTorrent implementation. To avoid biasing one variation
over another, we randomize the times they run, so that each
variation has an equal chance at running in different weeks
during the year.

V. RESULTS

Our experiments vary greatly from run to run, even among
experiments with identical settings. The main reason for this
is that network configurations, background traffic, and com-
peting PlanetLab experiments all change from day to day and
month to month. There is also variability with any BitTorrent
download, since performance depends on which peers a client
connects to, the connection quality between peers, the blocks
the peers have available, and whether those peers allow the
client to download from them. The scout introduces additional
variability since it decides which blocks the source advertises
to each peer.

When using the scout, there is a general trade-off between
upload amount and download time. Figure 1 plots the results
of each experiment configuration, showing the amount of
data uploaded by the source over the entire experiment and
the average peer download time. Each point on the graph
represents a single 24-hour experiment – the color of a point
represents the algorithm and the shape represents the valueof
r. The standard BitTorrent implementation is shown in green.

It is immediately apparent that the scout enhancements do
reduce source load. There are many experiments in which the
source uploads less than 1 GB total, meaning it uploads the
file under 5 times to serve about 400 nodes. In general the
more the source reduces the amount of uploaded bytes, the
longer peers take to download the file. The penalty for cutting
the source’s uploaded bytes in half is that we increase the
average peer upload time by about 2.5 to 3 times. Given this



Probabilistic

Less Than K

Shuffle Rare

Random

Std BT

r=15

r=10

r=0

r=5

r=20

1

2

3

4

U
pl

oa
d 

am
ou

nt
 (

G
B

)

2 4 6 8
Average peer download time (hours)

Fig. 1. Overall experiment results

trade-off, it is difficult to say which point on the spectrum
is best. To a content-distributor the upload amount may be
most importance, while to the peers a small download time is
the most important. The slope of the trade-off line will likely
depend on peer lingering time; in these results, peers do not
linger at all once they finish the download. We plan additional
experiments to examine this effect.

There are some notable exceptions to this tradeoff. Experi-
ments withr = 0, meaning the scout did not probe additional
peers, often do better than standard BitTorrent, both in terms
of upload amount as well as download time. These include
the probabilistic (blue upward triangles),less than K(red
upward triangles), andshuffle rare(black upward triangles),
all on the left-hand side of the graph. The scout, in this case,
is still advertising only rare blocks, but is computing block
diversity using only the information from its directly connected
neighbors.

There are several reasons why no additional probing is
needed for good performance in our experiments. First, a
BitTorrent client connects to every peer it is given by the
tracker, typically about 80 peers. As a result, many peers end
up being directly connected to the source. Although only a
few of these download from the source at the same time,
each connection sends messages to the source informing it
when blocks have been obtained. In our experiments, as many
as 100 peers have been directly connected to the source at
one time, meaning the source has complete and up-to-date
knowledge of the block diversity for 25% of the peers in
the system. A probe from the scout is more uncertain than a
direct connection, because with a probe the scout only obtains
a snapshot of the peer’s available blocks. Thus with very
complete information from neighbors, probing may actually
worsen the scout’s estimate of block diversity. It is possible
that probing may only help when there are very large numbers
of active peers.

A. Understanding the Exceptions

We picked a few of the exceptional experiments to try
to understand why they do not follow the general trend,
performing either exceptionally well or exceptionally poorly.
We chose five such experiments, which will be referenced in
the following discussion. These includeprobabilistic, r = 0,

Probabilistic, r=0

Shuffle Rare, r=0

Less Than K, r=5

Std BT

Std BT

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy

0 10 20 30 40 50
% blocks peers obtained from seed

Fig. 2. Interesting experiments: CDF of source dependence

Shuffle Rare, r=0

Std BT

Less Than K, r=5

Std BT

Probabilistic, r=0

0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy
0 5 10 15 20

Download time (hours)

Fig. 3. Interesting experiments: CDF of peer download time

the left-most experiment in Figure 1;shuffle rare,r = 0, the
bottom-most experiment in the same figure;less than K,r = 5,
the right-most experiment in the figure; and the bottom-most
and right-most standard BitTorrent experiments.

For these five experiments, Figure 2 shows a CDF of the
percentage of blocks peers obtain from the source and Figure3
shows the CDF of the peer download time. Theprobabilistic
algorithm with r = 0 performs similar to the two standard
BitTorrent experiments, with 80% of the peers downloading
2% to 4% fewer blocks from the source, without increasing
download time. The other two experiments have significantly
different performance.

With shuffle rareand r = 0, the source gives most peers
fewer than 2% of the blocks, forcing them to get the rest from
their peers. While the 80th percentile is about the same as the
above experiments, nearly all peers take 5 hours to download
the file, rather than allowing some peers to download more
quickly. This approach appears to penalize the faster peers,
making them download from the slower peers.

With the experiment usingless than Kandr = 5, the source
gives out more blocks thanshuffle rare, but peers take 8 to
9 hours to download the file. In this experiment, there were
many peers who were in endgame mode for hours, waiting for
one last block to be made available to them. The source had
given this block to some peers, so it no longer considered it
to be rare, but the peers that had this “valuable” block were
either very slow or had connection problems with other peers.
Once the slow peers with the valuable block finished and left
the system, the scout discovered that this block was extremely



Less than K Probabilistic Random Shuffle Rare Standard BT

1
2

3
4

Advertisement algorithm

S
ou

rc
e 

up
lo

ad
 a

m
ou

nt
 (

G
B

)

(a) Bytes uploaded by the source

Less than K Probabilistic Random Shuffle Rare Std. BT

0
5

10
15

20
25

Advertisement algorithm

D
ow

nl
oa

d 
tim

e 
(h

ou
rs

)

(b) Peer download time

Fig. 4. Algorithm Comparison

rare and gave it out, allowing the other peers to finish.
Returning to Figure 1, it is clear thatless than Khas the

majority of the worst performances. This indicates how impor-
tant it is to include some randomness in block advertisements.
The less than Kalgorithm advertises a very similar block set
to peers that connect in close intervals. Theprobabilistic and
shuffle rarealgorithms tend to avoid this problem.

B. Comparing Algorithms and Probing Frequencies

To better compare the effect of different advertisement
algorithms and probing frequencies, we combine the resultsof
several experiments. To compare algorithms, we combine all
the experiments for the same algorithm, regardless ofr, and to
compare probing frequencies we combine all the experiments
for the samer, regardless of the algorithm. We then summarize
the results using a box plot with the standard five-number
summary. The box is drawn using the lower 25% quartile,
median, and upper 75% quartile, and the whiskers represent
the minimum and maximum of all data within 1.5 box-lengths
from the 25% quartile and 75% quartile. Any data values that
are outside the whiskers are outliers.

Figure 4 compares the algorithms based on the bytes
uploaded by the source and the peer download time. All of
the algorithms are able to decrease the median load on the
source by about 40% to 50%, while the median upload time

0 5 10 15 20 Standard BT

1
2

3
4

r (Peers pinged per minute)

S
ou

rc
e 

up
lo

ad
 a

m
ou

nt
 (

G
B

)

(a) Bytes uploaded by source

0 5 10 15 20 Std. BT

0
5

10
15

20
25

r (Peers pinged per minute)

D
ow

nl
oa

d 
tim

e 
(h

ou
rs

)

(b) Peer download time

Fig. 5. Probing Comparison

approximately doubles. The performance of all the algorithms
is very similar, with a very tight bound on the average
download time for the peers. Note that there appear to be
a lot of outliers, but this is because there are about 4000 peers
for each of the algorithms. The scout does not significantly
increase the worst-case download time for peers.

Figure 5 compares different probing frequencies using the
same metrics. The experiments withr equal to 0 or 5 peers
per minute result in much greater bandwidth savings – about
75%. In terms of download time, the experiments withr
equal to 0 have a 25% quartile that is much lower than when
probing takes place. This means that 25% of all peers that use
r = 0 finish in the same average time as downloads that used
standard BitTorrent, while simultaneously saving 50% of the
source’s bandwidth.

Probing more peers actually increases the amount the source
uploads, though it is still less than standard BitTorrent. While
counter-intuitive, we believe this occurs because probingtends
to contact peers only a few times during the entire experiment.
The information from each probed peer is out of date relative
to the source’s neighbors, which send updates constantly, and
these peers thus seem to have many fewer blocks than they
really do. Thus the more probing that occurs, the source’s
estimate of block diversity becomes less accurate.



−1

−0.5

0

0.5

1
R

−
C

or
re

la
tio

n

0 20000 40000 60000 80000
Time (seconds)

Fig. 6. Accuracy of block diversity estimate,probabilistic, r = 0

C. Block Diversity Estimate

We next examine how accurately the source is able to esti-
mate block diversity. We focus on theprobabilistic algorithm
with r = 0 to verify that directly connected neighbors are
enough to produce an accurate estimate in our experiments.
To correlate the data across peers, we align the logs based
on their timestamps, which were roughly synchronized with
SNTP. We then use the detailed peer trace to compute the R-
correlation between the estimate and the actual diversity over
time. R-Correlation values range from 1.0 to -1.0, where 1.0
indicates exact correlation, 0.0 indicates no correlation, and
-1.0 indicates an inverted correlation between two data sets.

Figure 6 shows a strong correlation between the estimate
and the actual block diversity for theprobabilistic algorithm
in this experiment. This shows that the directly connected
neighbors provide enough data for a group of 400 peers.

VI. RELATED WORK

The super-seeding algorithm also tries to reduce the load
on a BitTorrent source, but with a different method [4]. With
super-seeding, the source acts as if it does not have any blocks,
then as clients connect it tells them it has acquired one block.
The source will not inform a peer of any other blocks until
it can confirm that this block has been delivered to at least
one other peer. Experiments on PlanetLab show this can save
20% of the source’s bandwidth, with little effect on the overall
time it takes for 90% of the peers to finish downloading the
file. In this work, peers act as seeds after downloading the file,
which provides a significantly different testing scenario than
our work. If the source uploads less, there are plenty of other
peers with the entire file that can help out, particularly once
the experiment has been running for a while. As compared
to super-seeding, the scout only shares blocks that are truly
rare, and thus can reduce source load even further. Additional
experiments are needed to determine whether the scout can
effectively push load onto other seeds as with super-seeding.

Several other projects seek to improve BitTorrent in ways
that are complementary to our work. Bindal et al. improves
the efficiency of BitTorrent by modifying the tracker so that
it gives clients a list of other peers that use the same ISP
[5]. This ensures that most of the peer-to-peer traffic stays
within the ISP, which saves outgoing bandwidth for that ISP.

The smart seed algorithm has a seed decide which block to
give out by examining the blocks needed by the peer and
choosing the one the seed has served the least [6]. This
results in the seed serving fewer redundant blocks, however
this modification is not compatible with existing BitTorrent
implementations. Finally, the Slurpie peer-to-peer system has
several mechanisms that allow it to control the load on a
central server regardless of the number of active peers [7].

VII. C ONCLUSION

This work shows that it is possible to reduce the source’s up-
load bandwidth by modifying the source to selectively adver-
tise blocks based on their popularity. Saving source bandwidth
typically results in longer peer download times. However, in
our best experiments the scout can reduce the source’s upload
bandwidth by 75%, while only doubling download time. This
is an encouraging result, since none of the peers in our
experiments act as seeds once they download the file. Having
peers act as seeds, as is common with BitTorrent, will improve
performance by providing additional upload capacity to offset
the reductions by the scout. Our experiments also show that the
advertisement algorithm should include some randomness, to
avoid starvation, and that a source’s neighbors provide a good
estimate of block diversity for moderate numbers of peers.

There are a number of areas for future work. First, it is
possible that we are being too aggressive in our attempts to
reduce source load. We plan to focus onprobabilistic and try
different probability distributions to improve the performance
tradeoff. Another way to improve download time is to treat
peers differently when they are close to finishing. By giving
a peer the final blocks it needs, the source should be able to
avoid difficulties that arise when peers are waiting for a block
that is only held by slow or poorly-connected peers.

We also want to address some of the limitations of our
measurement study. We plan to run experiments where we
add lingering time, so that there are additional seeds during
the swarm, and to compare our performance directly to super-
seeding. We are also planning to run simulations using the
scout, so that we can examine performance in a more con-
trolled environment and so that we can determine whether
probing becomes valuable for much larger numbers of peers.

REFERENCES

[1] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot, “Packet-level traffic measurements from the Sprint
IP backbone,”IEEE Network, vol. 17, pp. 6–16, November 2003.

[2] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang, “Exploiting bittorrent
for fun (but not profit),” in IPTPS, 2006.

[3] B. Cohen, “Bittorrent,” http://www.bittorrent.com.
[4] Z. Chen, Y. Chen, C. Lin, V. Nivargi, and P. Cao, “Experimental analysis

of super-seeding in bittorrent,” inIEEE Communications, 2008.
[5] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T. Bates,and A. Zhang,

“Improving traffic locality in Bittorrent via biased neighbor selection,”
ICDCS 2006, February 2006.

[6] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and
improving BitTorrent performance,” Microsoft Research, Tech. Rep.
MSR-TR-2005-03, March 2005.

[7] R. Sherwood and R. Braud, “Slurpie: A cooperative bulk data transfer
protocol,” in INFOCOM, 2004.


