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Abstract. This paper presents a new hierarchical multicast address al-
location scheme for use in interdomain multicast. OQur scheme makes
use of masks that are contiguous but not prefix-based to provide signifi-
cant improvements in performance. Our Cyclic Block Allocation (CBA)
scheme shares some similarities with both Reverse Bit Expansion and
kampai, but overcomes many shortcomings associated with these earlier
techniques by exploiting techniques from the area of subcube allocation
for hypercubes. Through static analysis and dynamic simulations, we
show that CBA has the following characteristics that make it an excel-
lent candidate for practical use in interdomain multicast protocols: bet-
ter address utilization under dynamic requests and releases than other
schemes; low blocking time; efficient routing tables; addresses reflect do-
main hierarchy; and compatibility with MASC architecture.

1 Introduction

The next decade will see increasing demands for the use of interdomain multicast
as an important form of group communication to support applications ranging
from multimedia transmissions to distributed conferencing and game-playing to
E-commerce transactions. A critical problem that must be solved in order for
multicast to serve these needs is the dynamic allocation of multicast addresses.

In this paper, we present a new hierarchical multicast address allocation
scheme for use in interdomain multicast. Our scheme makes use of masks that are
contiguous but not prefix-based to dramatically improve address utilization. Our
Cyclic Block Allocation (CBA) scheme shares some similarities with both Reverse
Bit Expansion [5] and kampai [16], but overcomes shortcomings associated with
these earlier techniques by exploiting results from the area of subcube allocation
for hypercubes.

We establish several fundamental results that impact the design of address
allocation schemes. We demonstrate the inherent limitations of pure prefix-based
address allocation with respect to its ability to recognize aggregatable blocks of
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addresses. In addition, we show that the likelihood that a domain can release a
block of addresses by halving is very poor. These results motivate the need for
aggressive strategies such as migration and swapping to increase address space
utilization and led us to the development of the CBA scheme.

Through static analysis and dynamic simulation we show that CBA has the
following characteristics that make it an excellent candidate for practical use
in interdomain multicast protocols: better address utilization under dynamic
requests and releases than other schemes; low blocking time; efficient routing
tables; addresses reflect domain hierarchy; and compatibility with MASC archi-
tecture.

2 Background

In this section, we review those approaches to address allocation that are most
relevant to our approach, highlighting their strengths and weaknesses. We then
briefly show the correspondence between the address allocation problem and
the subcube allocation problem from parallel processing. We show how known
results from the latter arena are applicable to the address allocation problem.

2.1 Terminology and notation

Throughout this paper, we use the following terminology and notation:

— block of addresses - a set of addresses that can be expressed using a single
address expression or mask. We use the standard notation for describing a
block of addresses, e.g. the set of four addresses 0000, 0001, 0010, 0011 can
be represented as the address expression 00XX, in which the X’s represent
“don’t care” bits. The same set of four addresses can be represented by the
mask 1100. where the 1’s in a mask correspond to those bit positions in
an address that are significant for use in the routing table lookup. In most
of this paper, we use address expressions instead of masks, but we use the
terms interchangeably when the context is clear.

— prefix-based mask/address expression - one in which all the significant bits
are in the leftmost positions; equivalently, in the address expression, all the
“don’t care” bits are in the rightmost positions.

— contiguous mask/address expression - one in which all the significant bits are
contiguous (adjacent) modulo the number of bits in the address. Thus wrap-
around is allowed.

— non-contiguous mask/address expression - one in which all the significants
bits are located in arbitrary positions; equivalently the don't care’s are also
located in arbitrary positions.

For example, given a block of 2° addresses allocated from a 2'° bit address
space, 00100XXXXX denotes a prefix-based address expression. 001XXXXX01
and XX00110XXX both denote contiguous address expressions, and X00XX10XX0
denotes a non-contiguous expression.



2.2 Current approaches to hierarchical address allocation

We presume a model for interdomain multicast as specified in Estrin et al. [9]
and the proposals of the IETF’s MALLOC working group [7]. Under this model,
domains operate using the Multicast Address-Set Claim (MASC) protocol [4]
for the assignment of address blocks between allocation domains. The MASC
allocation domains function as nodes in the interdomain hierarchy whose compo-
sition follows customer-provider relationships between ISPs. Allocation domains
claim sufficient address space from a parent domain to satisfy multicast address
requests from both internal applications and child MASC domains. Internal ap-
plications are served by separate intradomain MALLOC protocols. Throughout
the MASC architecture, all address allocations are granted with limited lifetimes,
although renewal is possible. This allows some allocations to timeout naturally,
permitting space to be reclaimed for aggregation. This avoids the alternative of
forcing all applications to renumber.

Several techniques have been considered for use within the MASC/BGMP
protocols for hierarchical and dynamic address allocation: prefiz-based techniques
and the kampai scheme which uses non-contiguous masks. Both of these tech-
niques expand a domain’s address space by doubling the size of the domain’s
block of addresses, and contract by halving the size of the address space. This ap-
proach is necessary to keep the routing tables small with the goal of one routing
table entry per domain.

Prefix-based techniques are those that adopt the same address masking tech-
niques as used in unicast addressing, specifying a block of addresses with a
prefix-based mask. These include the scheme currently under consideration by
the MALLOC working group of the IETF, Reverse Bit Expansion (RBE) [5],
which was proposed by Estrin, Govindan, Handley, Thaler, and Radoslavov.
Under the prefix-based mask, doubling occurs by changing the rightmost sig-
nificant bit in the mask to a don't care bit; and halving occurs by changing the
leftmost don't care bit to either a 0 or a 1. While natural and easy to understand,
prefix-based address allocation is known to suffer from poor address utilization
and aggregation abilities with utilization levels as low as 25% in a two-level
hierarchy [5, 8].

The MALLOC proposal addresses this problem by augmenting RBE with the
ability to migrate to a new block of addresses, at the cost of two Group Routing
Information Base (G-RIB) entries per domain. We will demonstrate later why
this extension is an excellent idea.

Tsuchiya’s kampai scheme [16] uses non-contiguous masks with the same
doubling and halving method discussed above. The use of non-contiguous masks
significantly improves address utilization but suffers from several shortcomings:

— kampai’s bottom-up, one-address-at-a-time allocation method is too cum-
bersome for realistic address allocation. Obtaining a large block of addresses
for a busy subdomain involves too much overhead in terms of number of re-
quests and constant G-RIB updates. The variation suggested by Tsuchiya,
in which addresses are allocated in chunks of 2¥-sized blocks at a time, limits
address utilization.



— kampai allows for ambiguous or overloaded masks. This means an address
mask associated with a given domain may only have part of its associated
block of addresses actually used by that domain, with the remainder dis-
tributed arbitrarily to other siblings. The conflict is disambiguated in the
routing tables, but results in a confusing and inelegant address scheme.

— kampai does not have a way to deal with address aggregation. Tsuchiya ac-
knowledges that with kampai removed addresses will be scattered about the
address space and that it is not possible to give back a block of address
space without reassigning some addresses. Tsuchiya’s simulations tested ad-
dress allocation only but did not investigate a more complete model with
both address requests and releases.

— kampai’s scheme only supports growth through doubling; it does not provide
a mechanism for migration.

— kampai’s scheme and its data structures are hard to understand although we
believe this is a problem with the presentation, not the underlying scheme.

2.3 Address allocation and subcube allocation

There is a simple and straightforward correspondence between the address allo-
cation problem and the subcube allocation problem in hypercubes. In the former,
blocks are allocated from a set of 2™ binary addresses with each block specified
as a mask or address expression as defined above.

The hypercube is a recursive structure that served as the underlying commu-
nication network of the Intel iPSC and N-Cube parallel processors. In a hyper-
cube, the 2™ processors are each labeled with an n-bit address; processors are
connected in a regular pattern as illustrated in Figure 1. A subcube of size 2* is
a subset of the hypercube that itself forms a smaller hypercube. Each subcube
is specified using a prefix or contiguous or non-contiguous mask in exactly the
same ways as blocks of addresses are described using masks. See Figure 2 to see
the relationship between subcubes and address blocks.

0
1
0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube

Fig. 1. Recursive definition of the hypercube
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Fig. 2. The correspondence between address allocation and subcube allocation

Under address allocation, child domains request blocks of addresses, use them
for a certain length of time, and then release them to the parent domain. In a
hypercube machine, applications request subcubes, hold them for the runtime
of the application, and then release the subcubes back to the operating system.
The algorithm used by the operating system to handle the requests and relin-
quishments of subcubes is the processor allocation algorithm and has been the
target of of intensive research for the past decade [14, 12, 11, 17, 3].

The key idea to remember is that a subcube is equivalent to a block of
addresses that is expressible using a single address expression or mask. This
equivalence means that subcube recognition techniques can be applied to the
problem of multicast address allocation. Note, however, that while hypercubes
machines typically have fewer than 2'2 processors, the address allocation problem
deals with much larger numbers of addresses: 228 under IPv4 and 2'?° under
IPv6. This difference and other practical constraints associated with address
allocation require that results from hypercube theory be applied to the address
allocation problem with great care.



3 Principles for address allocation

From past work in the area of subcube allocation and fault tolerant hypercubes,
we derive several results that have strong implications for multicast address
allocation.

First, we discuss the ability of prefix-based, contiguous, and non-contiguous
allocation schemes to grow by doubling the size of their address space. Next,
we compare the ability of these schemes to recognize aggregatable blocks of
addresses, and we show that prefix-based schemes perform poorly. Finally, we
demonstrate that under any scheme, when a child domain wishes to contract by
releasing one or more blocks of addresses, the likelihood of being able to contract
is extremely small. Poor ability to reclaim addresses results in intolerably low
address space utilization due to fragmentation of the address space.

After describing these results, we discuss their implications for the design
of a practical method for hierarchical and dynamic address allocation. Most of
our discussion will use the terminology from address allocation even though the
original results may have been developed for hypercubes.

3.1 Doubling capability

The capacity of a scheme to expand its address space by doubling is affected by
the type of mask allowed by that scheme.

In any prefix-based allocation scheme, there is only one choice for a new block
to be combined with the current block for doubling. This can be seen by noting
that doubling can only occur by converting the rightmost significant bit to a
don't care bit in the address expression corresponding to the current allocation.
If the single desired block needed for doubling is not free, the expansion cannot
occur.

Schemes that use contiguous masks have two choices when expanding through
doubling. This can be seen by noting that doubling occurs by converting either
the leftmost or rightmost significant bit to a don’t care. If neither of the two
desired blocks needed for doubling is free, the expansion cannot occur.

Schemes that use non-contiguous masks have n — k choices when expanding
through doubling, where n is the total number of bits in the full address space,
and k is the number of don't cares in the current address expression. This can
be seen by noting that doubling occurs by converting any one of the significant
bits to a don’t care bit.

The complexity of an algorithm to double the size of a domain’s block of
addresses is O(n) for all three cases, where n is the number of bits in the multicast
address. The doubling algorithm for contiguous masks under CBA is described
in Section 4.

3.2 Recognition capability

A given multicast address allocation scheme can be characterized by the number
of distinct blocks of a given size that it is capable of recognizing. Again, the mask



pattern limits the number of blocks that are recognizable due to the respective
constraints on the location of significant bits in each of these types of masks. We
will see later that recognition capacity is critical for reclaiming unused addresses
through migration and swapping.

Table 1 gives formulas for the recognition ability of a wide range of schemes
taken from the processor allocation literature. We classify each scheme based on
its use of prefix-based masks, contiguous masks, or non-contiguous masks.

The one with least recognition capability is the prefix-based Buddy scheme.
We note that Cyclic with contiguous masks supports n times the recognition
capability of prefix-based schemes. Also shown is the recognition capability of
three schemes not considered in this paper: Gray Code and Double Gray Code [2]
and Partners [1, 18]. These schemes use non-contiguous masks but do not allow
for all possible patterns of non-contiguity. Interestingly, they all do worse than
Clyclic. This is why we chose Cyclic for recognition in the CBA address allocation
scheme. We originally designed Cyclic as a subcube allocation algorithm almost
a decade ago; it is exciting to see its potential for use in multicast address
allocation.

The highest recognition capability (full recognition) is associated with fully
non-contiguous masks. While kampai uses fully non-contiguous masks, it does
not support full recognition in the sense discussed in this section; kampai only
gives an algorithm for expansion through doubling.

Figure 3 presents these recognition formulas for three sample address space
sizes, 2°, 219, and 228. The graphs show the percentage of aggregatable blocks
found by a given scheme relative to the total possible number of aggregatable
blocks (under full recognition). From these graphs, we see that Cyclic is the only
scheme with reasonable performance. As the address space increases in size, all
other schemes will fail to recognize blocks and Cyclic will only recognize large
and small blocks.

It is important to note that the increasing recognition ability of these schemes
comes at the cost of higher overhead. The complexity of prefix-based recogni-
tion for a given parent domain is O(n x C'), where n is the number of bits in a
multicast address and C' is the number of child domains served by that parent.
The complexity of any algorithm for full recognition with non-contiguous masks
is O(n! x n x C'); the factorial term renders full recognition with non-contiguous
masks computationally infeasible. The complexity of recognition for contiguous
masks may be exponential in the worst case, but has not yet been proven to be
so. We have found a linear time recognition algorithm for a large subclass of con-
tiguous masks. We believe there exists a polynomial time recognition algorithm
for all contiguous masks; this is part of our ongoing research.

3.3 Address aggregation capability

Our work in the area of faulty hypercubes [6, 13] yields some results that have
severe implications for the likelihood of address aggregation even in the best
of circumstances. The problem of reducing the set of addresses allocated to a
child domain by repeatedly halving its address space is related to the problem of
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Subcube Total blocks recognized
Allocation Scheme general formula |example: n =8, k=3
Buddy (prefix-based) on—F 32

Gray (constrained non-contig) on—Fk+I 64

Double Gray (constrained non-contig) not shown 128
Partners (constrained non-contig) (m—Fk+1)x2"F 192

Cyclic (contiguous) nx 2" F 256

Full (non-contig) (7) x 2"7F 1792

Table 1. Recognition capability of prefix-based, contiguous, and non-contiguous
schemes: n bit address space, k bit subcube/block

finding the minimum number of faulty processors in an n-dimensional hypercube
so that every k-dimensional subcube is faulty, & < n. Since our focus is on
contraction through halving, we first state the results for this special case. We
then briefly describe the more general situation.

In particular, suppose a child domain wishes to relinquish a block of addresses
to its parent by freeing half of its addresses. Specifically, if the child holds a 2*
size block of addresses it would like to free up a 28~ size block, leaving itself with
a 2F=1 size block. However, the likelihood that 2¥~! or more unused addresses
actually form an aggregatable block that is representable by a single mask turns
out to be almost negligible.

Figure 4 shows the probabilities of being able contract by halving the size
of the address space. The formula used to compute these probabilities is given
in [10]. From the graph, we see that only a small number of addresses in use
(around 10) from the huge exponential address space causes the probability of
aggregation to fall below 5% for the samples given. The prospects become even
worse for larger address spaces: an increasingly smaller fraction of the addresses
in active use reduces the probability of aggregation to these low levels. In [6],
we show that only two addresses in active use for multicast sessions can prevent
any aggregatable block of size 2¥~! to exist for purposes of halving. Any pair of
addresses that are complements of each other comprise such a set.

In general, our work [6] shows that with probability close to 1, a random
collection of O(n) faulty processors will leave no large fault free subcubes. In
terms of address allocation, this means that only a small number of addresses in
active use for multicast sessions can completely destroy the ability of the domain
to free up a large aggregatable subset of its addresses.

We note that under the MASC architecture, this problem is diminished since
rather than explicitly releasing space, MASC simply renews its claim on a smaller
sub-block. The MASC protocol guarantees that any sessions allocated to the
non-renewed block will have timed out by the time the sub-block times out.
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3.4 Implications for practical address allocation schemes

Any viable address allocation scheme must perform well under dynamic expan-
sion and contraction of its address space. Because of the woefully poor proba-
bility that a domain can actually free up a block of addresses by halving, we
believe it is necessary to adopt techniques such as migration and swapping in
order to aggressively reclaim fragmented blocks of free addresses.

Migration was proposed by Estrin, Govindan, Handley, Thaler, and Ra-
doslavov in the IETF’s MALLOC working group [5] in order to address the
shortcomings of RBE. When a child domain needs to increase its address space
and it cannot expand its current block, it migrates. Under migration, it is given
a completely new block of addresses of double the size. As new multicast sessions
are created, the multicast addresses are allocated from the new block. As the
old sessions timeout, their addresses are freed up; when all the old addresses are
free, the old block is released to the parent domain.

Swapping is a type of migration we propose in which a domain is given a
new block that is the same size as its current block. The domain migrates to the
new block and eventually frees up its old block. Swapping occurs among sibling
domains, for example, when one domain can only double by using a block held
by one of its siblings.

Both migration and swapping support higher address space utilization by
finding alternative blocks when standard doubling and halving fails. By seeking
available space within the domain’s current allocation, we avoid asking the parent
domain for more space for as long as possible. This is desirable since allocation
of more space from the parent triggers global changes to the routing tables [9].

Migration and swapping come at a significant price: they require two routing
table entries per domain during the time that the domain holds both the old



and new blocks. This becomes a severe problem for the top level domains whose
current BGP routing tables contain tens of thousands of unicast entries. Under
BGMP, the tables will be even further expanded to add G-RIB entries to the
unicast and M-RIB entries. Thus, any scheme with fewer entries per domain is
clearly preferable.

The discussion above shows a clear tradeoff among competing goals: abil-
ity to expand and contract with reasonable likelihood versus complexity of the
algorithms used for expansion and contraction versus need to keep the routing
tables stable and small. To summarize the analysis above:

— Independent of the type of mask, the probability of aggregation by halving
is close to zero for most block sizes and especially for addresses with n > 12.
This means migration and swapping techniques must be used to recapture
fragmented free blocks.

— Migration requires good recognition capability. Prefix-based schemes have
poor recognition capabilities, and full recognition (non-contiguous masks)
has intolerable overhead.

— Cyclic recognition (contiguous masks) is the best known scheme that has
reasonable overhead.

As a result, we designed our Cyclic Based Allocation scheme, which uses con-
tiguous masks, augmented with both migration and swapping.

4 Cyclic Block Allocation (CBA)

Cyclic Block Allocation (CBA) is a new hierarchical multicast address allocation
scheme that performs well under dynamic expansion and contraction of address
spaces. The defining feature of the CBA address allocation algorithm is that it
assigns blocks of addresses to child domains using contiguous address expres-
sions as defined earlier. Based on our earlier discussion, the use of contiguous
address expressions provides greater opportunities for doubling and migration
than schemes that use prefiz-based address expressions.

For ease of explanation, assume the domains are organized in a tree with a
single root node and assume that the top level node initially owns the full n-bit
address space. We first describe the overall operation of CBA. We then describe
the algorithms for doubling and migration. CBA can be implemented as either
a request-reply protocol or as a claim-collide protocol.

4.1 CBA description
Main Routine

— Initial request: A leaf child domain requests a base block of size 2¥. Each child
domain can use a different size for its base block.

— Expansion: When a high-threshold is met, expand by doubling. If doubling
is not possible, expand by migration. If migration is not possible, block and
try again later.



— Contraction: When a low-threshold is met, contract by halving. If halving is
not possible, contract by migration.! If migration is not possible, block and
try again later.

— Swapping: When opportunities exist for productive swapping, a parent initi-
ates swapping among selected siblings. (Swapping is not yet implemented.)

Subroutines

— Doubling: Doubling occurs as follows: first convert the leftmost significant bit
(modulo n) to a don't care to create a new mask that represents the desired
new block. This new mask is compared with the masks of all siblings to see
if there is a conflict. A conflict exists between the masks for domain A and
domain B if and only if the following condition holds: for every bit position
in which the bits in both mask(A) and mask(B) are significant bits, they
are identical (both one’s or both zeroes). If a conflict exists, repeat with the
rightmost significant bit (modulo n). If both cases fail, doubling has failed.
The complexity of doubling is O(n X s), where n is the number of bits in
the multicast address and s is the number of sibling domains. (This basic
doubling algorithm can easily be modified for doubling with prefix-based
masks and with non-contiguous masks.)

— Migration and swapping: Migration and swapping use the basic approach of
the (Full) Cyclic subcube allocation scheme for hypercubes [13] to find an
available block of addresses of the desired size; this parallel algorithm rec-
ognizes subcubes in an n-bit address space using 2" processors. For address
allocation under CBA, we developed a sequential algorithm for Cyclic to be
executed on the parent node when migration or swapping is initiated. CBA’s
subcube recognition algorithm is called the k-Cyclic algorithm because it rec-
ognizes those subcubes whose don't care bits start in bit positions 0 through
k — 1 and which do not wrap around. It turns out that this limitation is
needed to ensure that contiguous masks remain contiguous in a fully hier-
archical address allocation scheme. This is in contrast to Full Cyclic which
allows don’t care bits to start in any position and to wrap. k-Cyclic runs in
O(n) time for fixed k. Briefly, k-Cyclic maintains k lists of free subcubes, one
each for bit positions 0 through k& — 1. There is no duplication in recording
of a free subcube from one list to another i.e., a maximal free subcube will
appear only in one of the lists. The difficulty in this is the maintenance of
this maximal property when a subcube is returned. We can show that for
fixed k, to return a ¢g-cube and maintain the list property will require that we
investigate how the ¢g-cube can combine with an element in one list, then fur-
ther combine with an element in another list etc. One can show this process
is bounded by 2* searches; when k is fixed this number is constant. Further
details about the k-Cyclic subcube recognition algorithm can be found in
[10].

! Recall that under the MASC architecture halving can always be achieved without
migration as discussed earlier.



4.2 CBA features

In this subsection, we describe some of the characteristics of the CBA scheme
that make it an excellent candidate for hierarchical multicast address allocation.
Results of performance evaluation experiments for address utilization, blocking
time, and size of routing tables are described in the next section.

— Addresses reflect domain hierarchy: Given two or more address masks, it is easy
to determine the relationship among the domains holding the corresponding
blocks of addresses. In particular, domain B is a descendent of domain A iff
the don't cares in mask(A) cover those of mask(B) and the significant bits
in mask(B) cover those of mask(A). RBE’s prefix-based masks satisfy this
condition but kampai does not. Note that this property does not hold for
Full Cyclic but does hold for k-Cyclic.

— Routing table size and lookup: CBA requires a maximum of two routing table
entries per subdomain since it uses migration and swapping. Because the
addresses reflect the domain hierarchy and because the masks are contiguous,
the routing tables can be searched using standard search techniques. Also,
because CBA delays requesting more address space from the parent domain
through migration and swapping, fewer global changes to the routing tables
are needed.

— Compatible with MASC architecture: CBA can function within the structure
of the MASC architecture as a claim-collide protocol.

5 Simulations

The address allocation problem is highly dynamic in nature. This is particularly
true when evaluating the effects of address relinquishment, which is crucial to any
realistic analysis of address allocation algorithm performance. Therefore, many
of the properties of the multicast address allocation schemes already presented
are comparable only through the techniques of modeling and simulation.

In this section, we present a simplified model of multicast address allocation
that we use to analyze the properties of Cyclic vs. Prefiz-based address allo-
cation. Our simplified model roughly approximates MASC for the purpose of
investigating the fundamental principles behind these algorithms. Our ongoing
work uses the detailed model and simulator proposed by Radoslavov [15] which
we are using to obtain a more realistic analysis of CBA performance.

5.1 Algorithms Simulated

The preliminary simulations investigate the growth capability and needs for
migration in the context of address block requests and releases within a single
level domain hierarchy. We compare the performance of CBA with Adaptive
Reverse Bit FEzxpansion which is prefix-based. For the remainder of this paper,
we refer to the latter scheme as Prefiz.



We experimented with three versions of CBA, comparing their performance
with two versions of Prefiz. These differ in the method used to select a new block
of addresses for migration.

— Random Fit: CBA-RF and Prefiz-RF randomly choose a block from the set
of free blocks of the desired size.

— First Fit: CBA-FF and Prefiz-FF choose the block containing the smallest
address.

— Best Fit: CBA-BF examines the blocks in an order corresponding to their
distance from earlier allocated blocks in order to minimize potential inter-
ference?. We did not implement Prefiz-BF since prior work in processor
allocation has shown First Fit and Best Fit to perform comparably.

5.2 Simulation Details and Performance Metrics

We initially distribute a block of addresses to each child domain, taking the
block size from a uniform distribution of block sizes up to the maximum initial
block size of 20 bits in a 28-bit address space. This method was used to ramp up
the simulation to a reasonable initial utilization level in order to more quickly
reach steady state. Steady state was typically achieved within 5000 iterations.

A single iteration of the simulation visits all the children once in random-
ized order. At each visit, a child domain can initiate one of three actions: (a) a
request to grow by doubling in size, (b) a relinquishment of half of the owned
address space back to the parent, or (c) null action. If a request to grow cannot
be satisfied by doubling in place, the failure to double is recorded and an at-
tempt is made to migrate to a new block of double the current size. If migration
cannot be achieved, the failure to migrate is recorded and the action becomes
a null action. A request to halve is always satisfiable because we do not model
individual session allocations or lifetimes in this simulation. When halving, the
block released is selected in a manner consistent with the block selection crite-
ria (random, first fit, best fit). The probabilities for the three actions is biased
towards growth at a ratio of 5: 3 : 2 for grow, relinquish, null, respectively.

We modeled the load on the system by varying the number of child domains
from 32 to 200, and recorded the following metrics. Results reported represent
means taken over repeated runs with 90% confidence levels. The confidence in-
tervals are not shown in the graphs below but are within +0.4% of the reported
means for all metrics except where noted.

Performance metrics captured by the simulation include: average address
space utilization; average percentage of failed requests to double; average percentage
of successful migrations; average percentage of successful growth - through either
doubling or migration; average iteration number for first failure to double - this
reflects the ability of the scheme to grow through doubling only; and average
iteration number for first failure to migrate.

2 This order depends on properties of the Cyclic allocation scheme and are discussed
in [10]



5.3 Simulation Results

Below we give representative results for a 28 bit address space. Results were
similar for address spaces greater than 16 bits.

Doubling (no migration): Figure 5 shows address utilization versus iteration
number with migration turned off. Four schemes: Cyclic-RF, k-Cyclic-RF, Prefiz-
RF, and Prefiz-FF are included. k-Cyclic has utilization at 80% and it has con-
sistently higher utilization levels than the Prefiz-RF scheme at 60%. Also of
interest is the rate at which each scheme reaches its maximum achievable uti-
lization level. k-Cyclic-RF has the fastest rate of increase. The ability to reach
the plateau more quickly corresponds directly to high success rates for doubling.
Note that Prefiz-FF has very poor performance (less than 3% utilization) be-
cause the tight packing of the blocks severely limits the ability to double. In
contrast, random schemes distribute the blocks, leaving empty spaces for future
growth through doubling.
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Fig. 5. Address utilization without migration (Note: legend lists algorithms in best to
worst order. Prefiz-FF is at the very bottom of the graph.)

Doubling plus migration: Figure 6 and Figure 7 illustrate the performance of
the address allocation schemes when the migration feature is activated. k-Cyclic-
RF and Cyclic-RF perform best, and four out of the five versions of Cyclic out-
perform the two versions of Prefiz. Only k-Cyclic-FF has utilizations comparable
to Prefiz. However, the differences among all seven algorithms is only a few per-
centage points. What is particularly surprising is that with respect to address
utilization, each individual scheme performs better without migration than with
migration (except for Prefiz-FF). We speculate that the addition of migration
tends to fragment the address space in a manner that interferes with the ability



to double. We believe this fragmentation can be controlled by refinements of the
migration selection criteria. Further investigation of this phenomenon is part of
our ongoing work.

Address Space Utilization with migration and 28 bit address space
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Fig. 6. Address utilization versus number of children, with migration
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Migration success rate: Figure 8 shows stark differences in the ability of these
algorithms to migrate. It appears that the First Fit algorithms perform better
for migration, while the Random Fit algorithms perform better for doubling.
Also, while the confidence intervals for all other metrics were very small (less
than 0.4%, for migration success rate the confidence intervals ranged from 0.4%
to 18%, indicating that subcube recognition capacity is highly sensitive to the
dynamic situation as well as the algorithm.

Migration Success Rate with migration and 28 bit address space
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Fig. 8. Migration success rate versus number of children

5.4 Dynamic Features of CBA

— Address utilization and blocking time: k-Cyclic outperforms all other schemes
and quickly reaches high levels of utilization (up to 80%) without migration.
Its high success rate for growth implies less blocking time waiting for the
parent domain to acquire more addresses.

— Impact on G-RIB tables: The ability to grow through doubling versus migra-
tion affects G-RIB table sizes. Growth through migration requires retaining
two G-RIB entries for a period of time, a high cost situation given the cur-
rent explosion in routing table sizes. Growth solely through doubling avoids
this overhead. Growth success rates directly affect G-RIB flux. Whenever a
growth request fails, the parent domain must also make a growth request
to its parent domain, necessitating global changes to G-RIB tables at the
higher level domains.

While we have run many simulations over a wide parameter space, the results are
not yet conclusive. The preliminary nature of these simulations call for continued



study of CBA to understand the conditions under which its performance can
attain its theoretical promise.

5.5 Realistic simulations

Much more detailed and realistic simulations are being conducted using the
MascSim software [15], written by Pavlin Radoslavov at USC-ISI, modified to
model the nonwrapping version of CBA. MascSim realistically simulates in detail
the MASC protocol including hierarchical domain topologies, arbitrary address
demand step functions, link failures, and true MASC claim-and-collide behavior.
The most important benefit of this level of simulation will be a better analysis of
the comparative G-RIB sizes and flux generated in a hierarchy by CBA versus
the RBE prefix algorithm. MascSim will also provide observations of utilization
and allocation latency.

6 Future Work and Conclusion

Our ongoing and future plans include refinement of our current migration al-
gorithms with better subcube selection criteria to avoid the interference and
fragmentation effect. We also plan to develop a polynomial time algorithm for
Full-Cyclic. CBA’s swapping technique will be developed with new algorithms to
select targets for swapping. Finally, many additional simulations are called for,
most notably for migration when a child relinquishes a block and for swapping.

In general, we believe that the multicast address allocation problem is an
instance of a broad class of resource allocation problems from which cross-
pollination will continue to be fruitful. Much work remains to be done in both
theoretical foundations and in performance analysis within the realm of hierar-
chical multitcast address allocation.
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