
Content-Based Security for the Web

Alexander Afanasyev
University of California, Los Angeles

aa@cs.ucla.edu

J. Alex Halderman
University of Michigan, Ann Arbor

jhalderm@eecs.umich.edu

Scott Ruoti
Brigham Young University

ruoti@isrl.byu.edu

Kent Seamons
Brigham Young University

seamons@cs.byu.edu

Yingdi Yu
University of California, Los Angeles

yingdi@cs.ucla.edu

Daniel Zappala
Brigham Young University

zappala@cs.byu.edu

Lixia Zhang
University of California, Los Angeles

lixia@cs.ucla.edu

ABSTRACT
The World Wide Web has become the most common plat-
form for building applications and delivering content. Yet
despite years of research, the web continues to face severe
security challenges related to data integrity and confidential-
ity. Rather than continuing the exploit-and-patch cycle, we
propose addressing these challenges at an architectural level,
by supplementing the web’s existing connection-based and
server-based security models with a new approach: content-
based security. With this approach, content is directly signed
and encrypted at rest, enabling it to be delivered via any
path and then validated by the browser. We explore how
this new architectural approach can be applied to the web
and analyze its security benefits. We then discuss a broad
research agenda to realize this vision and the challenges that
must be overcome.

CCS Concepts
•Security and privacy→Key management; Web pro-
tocol security; Usability in security and privacy; Dig-
ital signatures; Public key encryption; Browser security; Web
application security; •Networks→ Naming and address-
ing;

Keywords
content-based security; web security; end-to-end encryption

1. INTRODUCTION
The World Wide Web is the most popular platform for

building client-server applications and for delivering online

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NSPW ’16, September 26 - 29, 2016, Granby, CO, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4813-3/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/3011883.3011890

content; it is a major factor in the Internet contributing over
$1.6 trillion to the world economy every year [46]. Unfortu-
nately, despite decades of research, the web continues to be
plagued by security problems. Attacks on web servers result
in the theft of passwords (e.g. [40, 44]) and confidential data
(e.g. [5,29,72,78]), resulting in billions of dollars in economic
losses [59]. Vulnerabilities in TLS—the cryptographic pro-
tocol that underlies HTTPS—and its implementations have
regularly and infamously undermined the security of mil-
lions of websites [1, 6, 12,24,38]. Classic web vulnerabilities,
such as cross-site scripting (XSS), remain among the most
commonly reported security problems worldwide [16,58,76].
Perhaps most alarmingly, nation-state attackers have recently
begun injecting their own code into third-party websites to
hijack visitors’ bandwidth for distributed denial-of-service at-
tacks [47]. Left unchecked, these security problems threaten
to undermine the web’s potential as an engine of commerce,
communication, and economic growth.

Many of the security problems affecting the web are due
to a fundamental mismatch between its semantics and those
of existing defenses. The web is a content-oriented system
by nature: HTTP has two types of messages, requests for
content at a particular URL and responses containing the
requested data. In contrast, the most important web security
mechanisms apply either a connection-oriented or server-
oriented architecture that focuses on protecting connections
between the browser and particular servers. For example,
HTTPS [61] provides a confidential and authenticated chan-
nel between browsers and servers, and the same-origin pol-
icy [11,54] isolates content loaded from different servers on
the client side. This approach was not the result of research
but historical convenience, since the web is constructed on
top of the TCP/IP protocol stack, which can only provide
point-to-point connections between clients and servers; thus
security was patched onto these connections.

This mismatch contributes to a spectrum of security prob-
lems. The threat model behind these defenses assumes that
web servers are secure; consequently, attackers who compro-
mise a server can arbitrarily intercept or modify the content
contained there, and so servers become a highly desirable
target. This problem is compounded because, due to the
web’s scalability and performance demands, web requests

are increasingly being fulfilled by network intermediaries,
such as content delivery networks (CDNs), caches, and other
middleboxes [2, 14, 19, 57]1. Under today’s secure channel
model, these middleboxes are able to see and modify the
data passing through them, so they too can be attacked to
compromise data and websites. Moreover, HTTPS servers
and middleboxes have to safeguard their private keys, yet
these keys need to be kept accessible to the servers and
middleboxes continuously in order to satisfy TLS connection
requests.

At the same time, more websites are integrating resources
from third parties, ranging from analytics tools to advertise-
ments to user-generated content. Intermingling content from
different sources must be accomplished under strict server-
oriented security rules to prevent XSS and other attacks, but
existing protections (such as the same-origin policy) provide
only coarse isolation and are complicated for developers to
use correctly [34]. Although the web’s power comes from
the rich interconnection of hyperlinks, where any content
may reference any other, the server-oriented security model
is simply incapable of expressing sophisticated semantic and
security relations among content.

We propose to address the security challenges facing to-
day’s web applications using a fundamentally different ap-
proach: content-based security. This approach is influenced
by our work with Named Data Networking [36, 56, 87], a
clean-slate design of a new Internet architecture. Under a
content-centric security model, each piece of web content can
be signed for authenticity and encrypted for confidentiality
independently of how it is delivered to end users. Policies
about who can modify or access content, and about what
executable content is allowed to do in the context of a site,
can be tightly bound to the content itself, rather than merely
to the server or domain at which it is hosted. Clients can ver-
ify the authenticity of items of content with fine granularity,
potentially down to the level of individual user comments on
a forum. Content-based security is an approach that is well
suited to providing secure communication over a network
that is increasingly considered hostile [4].

In this paper we explore the design space that is created by
the principle that all content on the web should be secured,
independent of (in addition to) the channel over which it is
carried. This represents a new paradigm for web security.
The principles of information-centric design have been well
explored for network architecture, resulting in a wealth of re-
search related to forwarding, routing, transport, and caching,
with new frontiers still being explored for networks with
intermittent connectivity and for the “Internet of Things”.
These principles have not yet been explored in the area of
web security; this paper is a first exploration of the advances
that can be made under this new paradigm.

We begin by analyzing the web’s current security problems,
focusing on limitations inherent in the web’s architecture.
We then argue that a web architecture with content-based
security at its core can solve many of these problems. Finally,
we lay out a research agenda that spans issues from trust
management for content producers to secure cryptography in
the browser, along with key management at both ends. Our
work in this space is in an early, exploratory phase, so our
designs at this point are preliminary in nature and reveal
more questions than answers.

1Cisco predicts that browsers will get the majority of their
content through CDNs by 2019 [17].

2. SECURITY PROBLEMS AFFECTING
THE WEB

There is a fundamental mismatch between the web’s content-
centric architecture and the connection-oriented and server-
oriented approaches taken by existing web security mecha-
nisms. This leads directly to a number of limitations and
weaknesses that contribute to many urgent security prob-
lems.

One family of examples stem from HTTPS, the crypto-
graphic transport used to secure websites. HTTPS is an
entirely connection-oriented protocol; the abstraction that it
provides is a secure channel between the browser and server,
with no awareness of the content itself. This results in a
number of problems, including:

• Although HTTPS secures the connection from the
server to the browser, servers themselves remain a cen-
tral point for attack. Data is often stored unencrypted
at rest, leaving it vulnerable once server security is
broken.

• HTTPS servers authenticate themselves to browsers by
using their private keys during the connection hand-
shake. This requires the private key to be accessible
to the front-end web server at all times, exposing it to
theft or leakage via side channels.

• HTTPS makes it difficult to follow the principle of
least privilege, since a single key is normally used to
safeguard all connections to a domain name.

• Although computational advances have reduced the
cost of deploying HTTPS encryption for traditional
servers, it can still be prohibitive for low-power and
low-resource embedded systems and for the growing
“Internet of Things.”

These issues are further compounded because, at the same
time that the security community is pushing for wider adop-
tion of HTTPS, a growing fraction of web content is being de-
livered via CDNs and middleboxes [17]. These intermediaries
violate HTTPS’s model of an end-to-end secure connection,
exposing sites and their users to several problems:

• CDNs need to terminate HTTPS connections in order
to provide their services, allowing them to see or modify
data on its way from the server to the user. Compro-
mise of a single CDN box can expose confidential user
information, as content is completely unprotected out-
side the HTTPS channel.

• CDNs tend to hold the private keys for large numbers
of servers, making them an extremely high value target
for attackers. This dangerous concentration of key ma-
terial is a symptom of the mismatch between HTTPS’s
connection-oriented security model and the modern
web’s content-oriented performance demands.

• Secure connections to CDNs or middleboxes can mask
insecure back-haul connections. For instance, Cloud-
Flare recently introduced free, one-click SSL support
for all its customers [18], but this only protects the
connection from CloudFlare to the browser. The con-
nection from CloudFlare to the back-end web server
often operates over unencrypted HTTP, exposing data

to theft or tampering with no indication to the user.
Middleboxes too can weaken HTTPS by failing to prop-
erly implement TLS or adequately validate certificate
chains [43].

Another family of security problems stem from the web’s
server-oriented isolation model. Web applications enforce
the same-origin policy, under which scripts running on one
page can only access data contained on a second page if both
pages were loaded from the same hostname and port. The
same-origin policy maps poorly onto the content-oriented
semantics of the web, making it both too inflexible and too
coarse:

• The same-origin policy grants identical privileges to
any script on a server, with no provision for assigning
fine-grained levels of trust. This makes it extremely
difficult to safely isolate user-generated content from
other content on the same server, such as in the case of
personal homepages on a university site or customizable
profiles on a social network.

• Websites frequently incorporate scripts from external
servers, for purposes such as advertising and analyt-
ics, and these scripts gain unrestricted access to any
data within the site’s origin. If the external server is
compromised, it can deliver a malicious version of the
script that attacks all sites that use it.

• Within a page, the same-origin policy has no concept
of who originated each piece of data. This leads to
frequent cross-site scripting attacks (XSS): an attacker
embeds a malicious script by posting data that gets
incorporated into the content of the page, allowing it
to be executed inside the site’s origin.

The urgency of these problems is reflected in several re-
cent World Wide Web Consortium proposals that attempt
to mitigate them. For instance, Content Security Policy [83]
defends against XSS using an HTTP header that specifies a
whitelist of approved sources from which a page may load
content—a simple form of reduced privilege. Subresource
Integrity [3] defends against attacks that tamper with exter-
nally hosted scripts by letting a page specify their hashes—a
simple form of control-centric integrity. These defenses point
in a promising architectural direction, but they do not go
far enough. In this paper, we introduce a comprehensive
approach to fine-grained and content-centric security that
has the potential to mitigate all of the problems described
above without introducing unnecessary complexity to users,
developers, or system administrators.

Although previous systems research has touched on ways to
secure web content directly, there has yet to be a systematic
architectural exploration of this approach. SSL Splitting [41],
SINE [27], HTTPI [15], HTTPi [73], and iHTTP [28] intro-
duce a variety of cryptographic mechanisms for efficiently
providing content integrity in the face of hostile networks
and malicious intermediaries, but all focus on the familiar
model of proving that content came from a particular server.
Spork [53] goes further, using remote attestation to allow the
client to verify that the server was operating properly when
it generated the content. S-HTTP [62] was an early attempt
to secure web content directly, but it focused primarily on
the HTTP protocol and did not address the numerous key
management hurdles that adoption would face. Closest to

our approach is WebTrust [8], a recently proposed framework
that combines finer-grained cryptographic integrity protec-
tions with a clean separation between servers and content
generators. While WebTrust shows one way that a content-
based approach to integrity can be made workable from a
cryptographic perspective, there is far more to be done to
understand how to build a comprehensive content-based se-
curity architecture for the web that supports both integrity
and privacy while being usable for publishers and end-users
alike.

3. CONTENT-BASED SECURITY
In this section we argue that the drawbacks of the web’s

connection-based and server-based security models can be ad-
dressed by using principles developed for information-centric
network architectures. We first provide an overview of the
Named Data Networking (NDN) [36, 56, 87] architecture,
which provides content-based security at the network layer.
We then analyze how this approach can be used to address
many of the web’s security problems.

3.1 Overview of NDN
NDN is a new network architecture that supports content-

based networking as a fundamental part of the network
layer2. A host requests content by sending an interest packet,
which specifies the name of the desired content, and the
network responds by sending back a data packet containing
the requested content. Since the requester only specifies what
it wants (i.e., the data name), the network has the freedom
to make intelligent decisions on where to forward an interest
packet. It could be satisfied using an available replica of the
data hosted by the original data producer or by a third-party
storage provider, or even by an in-router cache containing
the requested data.

Figure 1 illustrates the basic operation of an NDN network
using the New York Times website as an example. NDN
names are structured hierarchically and can refer to any
piece of content—a chunk of a video that is being streamed,
a portion of an article, or even an actuation command. For
example, data for an NY Times article about NDN may
have the name “/nytimes/tech/2015/08/20/ndn”, where ‘/’
delineates name components in text representations, simi-
lar to URLs. When the article about NDN is ready to be
published, the website editor creates data packet(s) with
the content of the article, splitting content into multiple
segments if necessary. Each piece of NDN data has a unique
name and is signed at the time of its production, crypto-
graphically binding the name and the data. Therefore, NDN
data packets can be stored and retrieved from anywhere in
the network. For content that may change dynamically, the
name must include additional components to disambiguate
different versions. In our example, the NY Times could add
a versioning component, such as a hash of the content, a
timestamp indicating when the last revision was made, or
simply a version number (e.g., “/nytimes/tech/2015/08/20
/ndn/_v=42”).

The website makes its content reachable in the network
by announcing its name, “/nytimes”, to the global routing

2The original principles of Content-Centric Networking
(CCN) were first described by Van Jacobson in 2006 [35].
When the National Science Foundation funded the work in
2010, the project was renamed Named Data Networking
(NDN) [87].

Interest:
/nytimes/tech/2015/08/20/ndn

Data:
/nytimes/tech/2015/08
/20/ndn/_v=42/_s=1

Interest:
/nytimes/tech/2015/08/20/ndn

Figure 1: Example of NDN communication

table. A consumer that wants to view the NDN article
sends an interest packet to the network (e.g., “/nytimes
/tech/2015/08/20/ndn”), with metadata indicating that the
latest version is requested. The interest is forwarded through
the network to the nearest replica of the website. Once the
interest packet meets a data packet with the matching name,
the network returns the data packet back to the original
requester or requesters along the reverse path of the interest
packet. The data packet carrying the article can be cached
by routers along the path, so that when a router receives
another interest for the same article, it can immediately
satisfy the interest with the cached copy.

In NDN every named piece of content (data packet) must
be signed. This ensures that the data can be authenticated
regardless of how/where it is retrieved. Besides the signature,
each data packet also carries additional metadata including
the signing key name. To authenticate a data packet, one
needs a trust model that defines which keys are authorized
to sign which data (trust rules) and one or more trusted
keys to bootstrap the trust (trust anchors). Any entity—
applications, dedicated network storage elements, and even
network routers—that learns the trust model for a given
piece of content can verify its authenticity, and may perform
necessary actions when the authentication fails (e.g., discard
the packet, or try an alternative path to retrieve). Keys
in NDN are just another type of data, thus they also have
unique names and can be fetched and authenticated in the
same way as any other data packets; data packets carrying
public keys are effectively NDN certificates.

NDN can also support content confidentiality by encrypt-
ing content at the time of production. The encrypted data
packets can be stored anywhere in the network as needed,
and delivered to requesters through any path without com-
promising their confidentiality. Only the authorized parties
are given the correct decryption keys to access the original
content.

3.2 A Content-Based Architecture for the Web
We believe that NDN’s content-oriented security model is a

natural fit for securing the web. Both NDN and the web use a
hierarchical namespace that is application-dependent, deliver
data associated with these names using a request–response
model, and cache content to improve performance.

Figure 2 explores a design for integrating content-based
security into the web. A producer generates content on a
back-end web server, signing and potentially encrypting the
content with its private keys. It then uploads this content
onto its front-end server. A web browser issues an HTTP

Figure 2: Content-based security for the web

request for the content and is directed to a CDN server. This
service fetches the signed (and possibly encrypted) content,
loads the content into is cache, and delivers the content to
the browser. Any additional content, such as third-party
JavaScript or advertising, is likewise loaded from additional
servers. This content is signed using authorized keys from
those domains. Finally, any user generated content, such
as a payment details or social networking posts, is signed
and possibly encrypted by the user’s authorized keys. Note
that each of the paths shown in this figure can be addition-
ally secured using an HTTPS connection. When content is
only signed, and not encrypted, this provides confidentiality
during transport.

Bringing the advantages of content-based security to the
web requires supporting content signatures and encryption
within HTTP. Although there are ongoing research efforts
to add content-based security semantics into HTTP, the
provided solutions are largely piece-meal, such as the stan-
dardization effort [10] to define data structures and encoding
formats for signed and encrypted JSON objects. We envision
adding relevant HTTP headers, such as a header that con-
tains the signature and another that provides the validation
key name. Note that keys are simply another piece of named
content.

An important feature of NDN is that content is immutable,
so a unique name must be used to refer to content that does
not change once it is signed. In HTTP, on the other hand,
URIs are usually not unique, rendering different content if
requested at different times or using different HTTP request
headers (cookies, accepted language, etc.). We propose ad-
ditional syntax and semantics be added to URIs to define
persistent names, such as using parameters to provide version
numbers or other context that converts a URL into a unique
name.

While signing every piece of content appears to impose a
high overhead, we believe this approach is feasible. Many
web pages are static, and even dynamic pages are often com-
posed from largely static elements. For example, the Amazon
home page consists of numerous elements, but nearly all of
them are static HTML, images, CSS, or Javascript. Likewise,
validating signatures for many content items is feasible, even
on mobile devices. Encryption operations on mobile devices
are currently accelerated, with typical devices able to stream
HD movies from Yahoo over encrypted connections. The ap-
proach is even feasible with today’s modern web applications,
which are often highly dynamic, such as video chatting and
mapping. Dynamic services ultimately deliver data—voice
or video packets, map data—and this could all be signed
and potentially encrypted on the fly, as it is with current

TLS connections. Live video streaming has already been
developed for NDN, demonstrating the feasibility of signing
live content [52,81].

We have built several prototypes to experiment with this
architecture, including a web server that inserts content
signatures in HTTP headers and a Chrome extension that
validates the signatures. Because Chrome extensions cannot
access the body of a response, the validation is done via a
SOCKS proxy. Our next prototype will integrate validation
directly into the Chrome browser.

3.3 Analysis of Benefits
Based on our experiences with the NDN architecture and

with content-based security prototypes for the web, we believe
bringing content-based security to the web would provide
the following benefits:

• All content is signed, providing both integrity and au-
thentication directly for the content. Web pages can
be signed by the content-creator’s key, then delivered
by CDNs over an encrypted channel that is protected
by the CDN’s separate key. This avoids the current
dangerous situation where CDNs must use each site’s
private key for its content, concentrating high-value key
material in one location. This also solves the problem
of CDNs transferring content among their back-end
servers using unencrypted connections. Finally, this
provides a way to combat cross-site scripting attacks,
since the browser would only run scripts that are signed
by the originating domain or an authorized third party.

• Sensitive content is encrypted at rest. It is not possible
to steal or tamper with content simply by breaking
into the server where it is housed. This is particularly
important because content is increasingly being hosted
at CDNs. While this can be accomplished today, it
must be done on a per-application basis. Because so
many applications are built on the web, resulting in a
new narrow waist for the Internet [60], we gain a great
deal of leverage by building content-based encryption
into the web.

• Private keys are kept offline. Static content is signed
and encrypted offline before being placed on a server
or CDN. This allows private keys to be kept offline,
where they have much stronger protection.

• The principle of least privilege is followed. Currently
web content is generally protected by a single key for
each server. With content-based security, a hierarchy of
keys is established, enabling different sets of resources
within a site to be protected by independent keys. This
can significantly limit the damage from key compro-
mise.

• Embedded systems can host secure content. Content
that rarely changes could be protected more efficiently
by signing and encrypting it once, rather than every
time it is requested. Our work has demonstrated that
name-based networking is a very good fit for the “In-
ternet of Things” [13,68–70].

4. RESEARCH AGENDA
Our research agenda to validate these ideas spans a variety

of issues from content creation on the back end to content

validation in browsers, including trust management, support
for cryptography in the browser, key management for both
content providers and users, and overall usability studies.

4.1 Trust Management
An important question for content-based security is which

keys to trust when validating signed and encrypted content.
This is a critical weakness in the current Internet; the Cer-
tificate Authority (CA) system requires browsers to trust a
very large number of authorities by default (1,832 signing
certificates, in one recent study [25]), and any of these cer-
tificates can sign for any domain. Thus the authentication
guarantees provided by the system are only as strong as
the weakest CA. This weakness has been exploited mul-
tiple times; for example, in 2011 DigiNotar’s servers were
hacked and more than 500 certificates were fabricated by the
intruder, including a certificate for Gmail that allowed the
intruder to access stored email for 300,000 Iranians [37]. This
happened despite the fact that Gmail does not use DigiNotar
to sign its certificates. This problem is exacerbated by CAs
that do not follow best practices [23,48] and governmental
ownership and access to CAs [25,75].

Content-based security provides a way to upgrade this
security so that a content provider can indicate which keys
may sign for different portions of the namespace it controls.
In addition, a provider can securely link to content, so that
any navigation from the provider’s namespace to another is
also done securely. As content-based security spreads, it thus
creates a separate web of stronger trust, overlayed on the
existing web.

This relationship between the URI of the content and
the URI of its associated keys—which keys are valid for
which parts of the namespace—can be formalized in a trust
schema [85]. A trust schema includes a set of linked trust rules
and one or more trust anchors. For example, the namespace
for a tech blog (/nytimes/tech/blog/*) could be linked
to the anchor for the editor (/nytimes/editor/tam/KEY/1),
who can sign keys for individual authors. A generalized
syntax allows further refinements.

This notion of a trust schema frees the web from its re-
strictive channel-based security model, which restricts trust
to content from the same origin [54], or from different origins
with a coarse (e.g., end-host, content type) granularity [83].
For example, a web page may need to include some specific
advertisement scripts from an advertisement website, while
excluding all the other scripts from the same website. Ex-
isting attempts to address this problem introduce a variety
of cryptographic mechanisms for efficiently providing con-
tent integrity in the face of hostile networks and malicious
intermediaries [15, 27, 28, 73], but all focus on the familiar
model of proving that content came from a particular server.
With a trust schema, on the other hand, a site that includes
advertising or other content from third parties can provide
a separate trust anchor and hierarchy of permitted keys for
each third party. User-provided content such as comments
on a blog can be relegated to being self-signed or signed by
a separate trust anchor, so that browsers know to treat it
differently.

For the trust schema to be validated by the browser, it
must depend on one or more trust anchors, similar to a web
site needing its key to be signed by some key in the browser’s
root store. An open question is how to ensure that trust
anchors can be distributed reliably to browsers without the

weaknesses of the CA system. One possibility is to adopt
some of the mechanisms being proposed to strengthen the
CA system, such as Certificate Transparency [67]. A variety
of alternative distribution methods are possible that would
allow greater freedom from the CA system, including models
that follow the strict naming hierarchy, such as DANE [9,32],
a public certificate log [67], pinning [26,49], and evidentiary
trust models such as Perspectives [82]. To explore these alter-
natives, we are building a certificate authentication platform
that makes it easy to develop and deploy new authentication
systems, as well as aggregate results among them. Of partic-
ular concern is the scalability of these authentication systems
to large numbers of sites and anchors, especially if individual
users (or their devices) sign the content they generate. It
may be possible to gain increased security by distributing
trust among many anchors, provided the compromise of a
single anchor doesn’t grant significant privileges.

One issue relates to the timeliness of content: a browser
needs to get the most recent content for a page, and avoid the
possibility of a man-in-the-middle providing signed but stale
content. This is currently handled on the web by relying on
TLS to ensure the browser is connected to the appropriate
server. As mentioned in Section 3.1, NDN content names
should include versioning information, and a content request
can specify that it desires the latest version. With content-
based security, the browser could use similar versioning in
the names (URIs) or in HTTP headers, and the browser
could use HTTP headers to request a response that includes
a recent timestamp (e.g. within the past minute).

Likewise, browsers need a way to validate the signatures of
long-lived content, when the lifetime of the content may out-
live the lifetime of the signature. An approach developed for
NDN is to use a publicly audited timestamp service, which
maintains proof of the date when content was signed [86].
This approach does not scale to all web pages being validated
long into the future, but can work for selected documents that
are considered important or for signing daily or weekly man-
ifests of published content. Alternatively, content providers
can re-sign content with new signatures as needed, potentially
updating the version of the content at the same time.

Finally, an interesting area to pursue is interaction between
the trust schema and existing privilege separation mecha-
nisms that regulate interactions among various JavaScript
applications. There is a wide variety of work in this area,
including object capability systems [22,45,51] and those that
rely on aspect oriented programming [50,79], or various other
techniques [20,21,33,77]. When the trust schema is validated
and enforced by the browser, these decisions should inform
the privilege separation mechanism so that untrusted code
is properly sandboxed if it is allowed to run.

4.2 Supporting Cryptography in the Browser
Users will need end-to-end encryption to sign and encrypt

their own content in a variety of scenarios. At a minimum,
content uploaded from users must be signed with their public
key, or a delegated key if the user manages a hierarchy of
keys. In addition, encrypted information uploaded by users
must be encrypted with their private key.

For encrypted information, there are two important cases.
First, users may need to communicate privately with the web
server to transmit sensitive information, such as a credit card
for a financial transaction. Second, users need end-to-end
encryption to protect their data from honest-but-curious

service providers, from governments that coerce or cooperate
with service providers, and from miscreants who break into
service providers. For example, secure messaging and secure
webmail apps use end-to-end encryption between users, while
the site that provides the messaging or webmail service is
not necessarily trusted, even though it may have a strong
reputation. In both cases, plaintext must be kept private
from all scripts loaded from the server. Scripts may be
controlled by a third party (threatening privacy in the first
case) or by the web service (threatening privacy in the second
case).

Meeting this challenge requires support for cryptography
in the browser that guarantees user privacy from code that
may not be completely trusted with personal information.
The browser needs a method for signing/validating and en-
crypting/decrypting data so that it can be safely delivered
to the authorized party—either the web server or another
end user. We particularly need systems that can provide
ubiquitous support for any site on the web, rather than those
that require special configuration for each site.

A variety of approaches have been used in this area, includ-
ing copy-and-paste from an external app into the browser [66],
using a ShadowDom [30], and using IFrames [77]. We have
found several fundamental security flaws with the Shadow-
Dom approach [65], so we have focused on on using IFrames
to provide a secure space that cannot be accessed by code
downloaded from the origin web server. We have used this
approach to develop a system called MessageGuard that pro-
vides ubiquitous encryption for all web applications [65]. As
shown in Figure 3a, MessageGuard uses secure overlays to
provide a generic interface for encrypting web content that is
uploaded in form fields, with customized interfaces available
on a per-application basis. We have used MessageGuard to
implement Private WebMail, which uses security overlays to
tightly integrate with webmail services like Gmail [64].

Figure 3b shows the architecture of MessageGuard. To
provide secure overlays, MessageGuard uses IFrames, which
allow an HTML document from the overlay’s origin to be
displayed as part of an HTML document from the web ap-
plication’s origin. Due to the same-origin policy used by
browsers, content in the overlay will be inaccessible to the
web application [54]. Communication between the overlay
and the web application occurs through the web messag-
ing API [31]. As long as the overlay never passes plaintext
data to the web application and never executes JavaScript
sent to it from the web application, it will remain secure.
Other approaches have used the ShadowDom [30], but this
approach has several security flaws, illustrating the danger
of building on a mechanism this is not intended to provide
security features. Using IFrames avoids this problem, be-
cause it is explicitly intended to be a security mechanism for
the browser; vendors pay significant attention to patching
vulnerabilities quickly when they are found.

Another approach that is complementary to MessageGuard
is to implement secure cryptographic operations and key stor-
age as an external component, separate from the browser.
This can strongly isolate keys from the browser, so that any
vulnerabilities in the browser do not compromise the user’s
keys. Web Cryptography (WebCrypto) API [74] is an on-
going standardization work at W3C to define a JavaScript
API for securely performing common cryptographic opera-
tions such as hashing, signing, verification, encryption and
decryption. However, there are several critical limitations

(a) Concept: Portions of the web application (left) have been
overlayed with secure interfaces (right).

(b) Architecture: Plaintext is present only within the Mes-
sageGuard origin, preventing the web application from ever
accessing it.

Figure 3: MessageGuard

of the WebCrypto API: web applications can still gain full
access to the decrypted messages and existing implementa-
tions of secure storage are browser-specific [55]. An open
area for research is in cross-browser/cross-device security
environments where private keys may be stored in a variety
of ways—within a local database, via a flash drive, through
devices connected via bluetooth, etc.

4.3 Key Management for Content Providers
Transitioning the web to content-based security will put a

premium on key management, a central challenge for applied
cryptography and usable security. Content providers need
mechanisms to manage the key lifecycle, including generating
keys, establishing a hierarchy of signing authority, establish-
ing expiration periods, and revoking keys that have been
compromised. They likewise need assistance developing trust
schemas that express desired security properties.

Automation will play a key role in helping providers man-
age security policies that follow the least-privilege principle.
It is highly desirable to limit the scope of keys in order to
limit exposure of cryptographic keys and reduce the damage
of key compromise. We envision software that provides auto-
mated management of complex hierarchies of keys with their
associated privileges. A system administrator identifies the
principals (authors, editors, web designers, user experience
engineers, etc.) and their roles, and notifies the system when
these roles change over time. With this input, the system can
automatically update a trust schema and generate/update
keys for the roles as needed. Likewise, the administrator may
need to identify keys that have been compromised, using
input from intrusion detection systems.

We assume that principals will generate and store their
own keys, since in some cases they may be only loosely
affiliated with the content provider (e.g. a freelance writer).

The principals then need to prove their identity to the key
management system so that their keys can be authorized as
part of the trust schema. We believe this process should be
automated as much as possible, to simplify administration
for large organizations.

Our experience developing the automated Let’s Encrypt
certificate authority [7,42] provides a path to explore auto-
matic key validation. With Let’s Encrypt, a system adminis-
trator runs software that automatically validates ownership
of a domain by meeting challenges, such as adding a DNS
record or publishing an HTTP resource under a well-known
URI. Once the challenges have been satisfied, the certifi-
cate authority issues a certificate, which is automatically
configured at the site’s web server. Certificate renewal and
revocation are accomplished via simple commands, again
with the process automated.

We envision adapting this process to provide automated
validation of a user’s identity within the context of an or-
ganization. The method for validating a user will differ,
depending on the organizational context. For example, an
organization may use an LDAP server to provide password-
based access to an identity server, where users can upload
keys. In other cases, an institution may want to prove own-
ership of an email address, and our software could automate
the process of reading a challenge email and then uploading
a key using an authorization code in the email. Some institu-
tions may want to use facial recognition. Multiple methods
can be combined to provide increased security.

Using automation also opens the possibility of issuing short-
lived certificates, rather than relying on certificate revocation,
with its accompanying challenges. Short-lived certificates
limit the scope of a key compromise because of the short
expiration period. With suitable automation, the overhead
for frequent (e.g, daily, weekly) certificate issuance may be
acceptable.

4.4 Key Management for Users
Key management is an especially important challenge for

users in a web with content-based security. To decrypt con-
tent being received from a server, users need help identifying
which keys are valid. Much of this can be automated through
the use of a trust schema, similar to how TLS is automated
today. However, when signing content with their own key,
for transmission to a server, users need help managing their
identity among the various devices they own. Likewise, users
need assistance when authenticating keys for other users.

Unfortunately, we have been stuck in a decades-long situa-
tion where “Johnny can’t encrypt” [84]. For secure email, our
ongoing research indicates that users have significant success
encrypting email using an automated mechanism based on
Identity-Based Encryption (IBE), which removes many of
the responsibilities from users but requires trust in a third
party to store and manage keys [63,64]. IBE enables users
to immediately interact with each other, for example to send
email to a user who has not yet established a public key
with their identity. IBE also enables users to easily recover
their keyed data (and thus all their past encrypted data) if
they lose a password or other identifying material. Manual
mechanisms, such as PGP, require users to manage their
own keys, potentially with help from well-designed software.
This approach provides increased security and limited risk
by removing any trusted third parties, but leads to other
challenges such as distributing and validating keys, trans-

ferring keys between devices, and the lack of key recovery
if the user loses the key or forgets the password protecting
the key. There has been a significant lack of well-designed
software that helps ordinary users effectively manage their
own keys [71,84].

One way to move forward on this challenge is to recognize
that users rarely need to find or validate keys for complete
strangers. Rather, people are more likely to need the key
for a friend, colleague, or well-known public figure (e.g., a
journalist or politician). Accordingly, we plan to tackle key
discovery and validation using evidence and social connec-
tions. By evidence, we mean the collection of data that can
be used to make a trust decision. By social connections we
mean the existing relationships people share, both online and
in person.

We are developing a method for social authentication [80],
in which users upload their public keys to their social me-
dia accounts—either directly in their profile where this is
enabled, or by embedding their key in a post. Users can
easily find the keys of their friends by downloading them
from their social media profiles or pages. This approach has
significant benefits. First, it aligns a common use case for
key distribution (finding keys for your friends) with existing
trusted relationships on social networks. Second, validating
keys can leverage the existing trust users already place in
their friendships. People have already developed a shared
history of posts, pictures, and personal communication that
enables them to trust their friend’s social media presence,
and hacking of these profiles is readily apparent because au-
thentic posts and pictures are difficult to fake. Keybase uses
a similar idea, but lacks usable tools for people to directly
leverage social connections, and instead requires people to
primarily use Keybase as a trusted identity server [39].

We are additionally interested in methods that automati-
cally collect and present evidence that can be used for a trust
decision—from personal web pages, Google Scholar profiles,
published articles, and so forth. Evidence-based software
could enable users to more easily make decisions on who to
trust, with automatic download and configuration of keys
once that decision is made.

An additional problem to study is transferring private
keys to other devices, focusing on deployability, security,
and usability tradeoffs. One design could store the key
on a trusted server, encrypted with a password, similar to
LastPass [40]. This will be helpful for users who are familiar
with password-style authentication. Other designs could
transfer keys among devices via bluetooth or a flash drive.

Finally, users need help protecting them from the conse-
quences of key loss. A master key could be kept offline, with
delegation of subkeys to authorized devices. The master key
could be stored on a USB drive or a QR code printed on
paper, giving users an analogue to physical keys they are
used to safeguarding. Still, this raises new challenges to
help users manage a hierarchy of keys and the revocation or
expiration subkeys.

4.5 Usability
Usability must be addressed for content-based security

to be successfully deployed. Our prior work with secure
webmail indicates that careful design can improve usability
significantly [64]. Four design choices helped in this case: (1)
using an artificial delay3 to show users their message being

3We believe this delay can be eliminated over time as users

encrypted enhances user confidence in the strength of the
message encryption while simultaneously instructing users
on who can read encrypted messages; (2) using email com-
position interfaces to show users which emails are encrypted
helps them avoid mistakenly sending sensitive information
in the clear, reducing the mistake rate from 10% to 2% in
our lab experiments; (3) including contextual clues to help
users understand how to use secure email correctly; and (4)
implementing inline, context-sensitive tutorials to instruct
users, improving view rates for tutorials from less than 10%
to over 90%.

A broad range of usability methods can be applied to eval-
uate solutions for a content-secure web. This process begins
with surveys and interviews to better understand user prefer-
ences and attitudes toward security. Cognitive walkthroughs
and heuristic evaluation are then used during the prototyp-
ing phase to emphasize usability from the perspective of
the user. Interface design needs to ensure that users know
what actions are available to them, that these actions will be
appropriate for the effect they are trying to achieve, and that
they receive positive feedback after taking an action. Lab
usability studies provide feedback on more complete systems,
gathering both quantitative and qualitative user feedback.
Finally, long-term studies of use in the wild validate that
user needs are in fact being met.

Usability studies are necessary to evaluate whether admin-
istrators can create effective trust schemas and automatically
validate content authors, content authors can correctly sign
their data, users can take effective action based on warning
messages when data validation fails, users can properly use
a public/private key pair to manage their identity across
devices, and so forth.

There are a number of usability challenges to address in
content-based security:

• What kinds of high-level data sharing policies do orga-
nizations need to be enforce, and can these be easily
and automatically expressed in trust schemas?

• Can we effectively validate a user’s identity automati-
cally online?

• Can short-lived certificates eliminate usability prob-
lems associated with revocation or do they introduce
additional complications?

• When content is loaded from multiple web servers and
some of it fails verification, how is this communicated
to users?

• Can evidence and social connections help users make
choices regarding who to trust and provide automated
or semi-automated key discovery and validation?

• Can users manage a master key and a hierarchy of
keys in order to cope with key loss for an authorized
device, or are they better served with key escrow using
a trusted third party?

• What security features can be hidden from users and
what features need to be visible in order to provide

become adapted to the system. There are also numerous
possible alternatives, such as showing ciphertext alongside
plaintext, using explanatory text in the composition interface,
etc.

users with an accurate model of the security that is
being provided? Do users need an accurate security
model? How much do users need to know about public
key cryptography to effectively use these tools?

• When a problems occurs, what notification is effective
at informing users what is happening and leading them
to make appropriate decisions to address the problem?

5. CONCLUSION
Bringing content-based security to the web will make it

easier for content providers to publish secure content that can
be delivered over any path and automatically validated by
browsers. This approach can solve many of the problems that
plague today’s web. Signing content mitigates man-in-the-
middle and cross-site scripting attacks, and encrypting data
at rest enables content to be protected from theft regardless
of where it is hosted. Private keys can be kept offline and
the principle of least privilege can be followed.

A number of research issues must be solved to make this
new approach a reality, and we have identified the follow-
ing major problems. Content providers need automated
trust management for a hierarchical collection of authorized
keys and the relationships among their data and third-party
scripts. Browsers need methods for securely integrating cryp-
tography so that the trust schema published by a site is
followed and so that a user’s keys and private data are iso-
lated from untrusted JavaScript. Content providers need help
managing keys for a variety of principals, with automation
of identity verification. Users need help validating the keys
of other users and managing their own private keys. Many
usability challenges must be met so that users will be able
to adopt technology that requires regular interaction with
public key cryptography. There may well be other issues that
we have missed; we are looking forward to the community’s
input to help move this research agenda forward.

Acknowledgements
We’re grateful for feedback from the reviewers and our shep-
herd, Sarah Meiklejohn, and for formative discussions with
kc claffy and other members of the NDN project.

This material is based in part upon work supported by
the National Science Foundation under grants CNS-1345254,
CNS-1409505, CNS-1345318, CNS-1518888, and CNS-1528022,
and by an Alfred P. Sloan Foundation Research Fellowship.
This material is also based in part on research sponsored
by the Department of Homeland Security (DHS) Science
and Technology Directorate, Cyber Security Division (DHS
S&T/CSD) via contract number HHSP233201600046C. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the sponsors.

6. REFERENCES
[1] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,

M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann. Imperfect
forward secrecy: How Diffie-Hellman fails in practice.
In 22nd ACM Conference on Computer and
Communications Security (CCS), Oct. 2015.

[2] Akamai. Akamai website. https://www.akamai.com/.
Accessed: September 23, 2015.

[3] D. Akhawe, F. Braun, F. Marier, and J. Weinberger.
Subresource integrity.
http://www.w3.org/TR/2015/WD-SRI-20150916/,
Sept. 2015. Accessed: September 23, 2015.

[4] J. Angwin, J. Larson, C. Savage, J. Risen, H. Moltke,
and L. Poitras. NSA spying relies on AT&T’s ‘extreme
willingness to help’.
https://www.propublica.org/article/
nsa-spying-relies-on-atts-extreme-willingness-to-help,
2015. Accessed: September 18, 2015.

[5] Anthem. Statement regarding cyber attack against
Anthem. https://www.anthem.com/health-insurance/
about-us/pressreleasedetails/WI/2015/1813/
statement-regarding-cyber-attack-against-anthem,
2015. Accessed: September 23, 2015.

[6] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,
M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A.
Halderman, V. Dukhovni, E. Käsper, S. Cohney,
S. Engels, C. Paar, and Y. Shavitt. DROWN: Breaking
TLS with SSLv2. In 25th USENIX Security Symposium,
Aug. 2016.

[7] C. Babcock. ‘Let’s Encrypt’ will try to secure the
Internet. InformationWeek, 2015.

[8] M. Backes, R. Gerling, S. Gerling, S. Nürnberger,
D. Schröder, and M. Simkin. WebTrust—a
comprehensive authenticity and integrity framework for
HTTP. In 12th International Conference on Applied
Cryptography and Network Security (ACNS), volume
8479, pages 401–418, 2014.

[9] R. Barnes. DANE: Taking TLS authentication to the
next level using DNSSEC. IETF Journal, 2011.

[10] R. Barnes. Use cases and requirements for JSON object
signing and encryption (JOSE). RFC 7165, 2014.

[11] A. Barth. The web origin concept. RFC 6454, Dec.
2011.

[12] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,
C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and
J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In 36th
IEEE Symposium on Security and Privacy, pages
535–552, 2015.

[13] J. Burke, A. Horn, and A. Marianantoni. Authenticated
lighting control using named data networking.
Technical Report NDN-0011, NDN, October 2012.

[14] B. Carpenter and S. Brim. Middleboxes: Taxonomy
and issues. RFC 3234, Feb. 2002.

[15] T. Choi and M. G. Gouda. HTTPI: An HTTP with
integrity. In 20th International Conference on
Computer Communications and Networks (ICCCN),
2011.

[16] S. Christey and R. A. Martin. Vulnerability type
distributions in CVE. https://cwe.mitre.org/
documents/vuln-trends/index.html, 2007. Accessed:
September 23, 2015.

[17] Cisco. Cisco visual networking index: Forecast and
methodology, 2014-2019. White Paper
http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/ip-ngn-ip-next-generation-network/
white paper c11-481360.html, 2015. Accessed:
September 23, 2015.

[18] CloudFlare. CloudFlare one-click SSL.
https://www.cloudflare.com/ssl. Accessed: September
23, 2015.

[19] CloudFlare. CloudFlare website.
https://www.cloudflare.com/. Accessed: September 23,
2015.

[20] D. Crockford. Adsafe. http://www.adsafe.org/.

[21] W. De Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. Flowfox: a web browser with flexible and
precise information flow control. In 19th ACM
Conference on Computer and Communications Security
(CCS), pages 748–759. ACM, 2012.

[22] J. B. Dennis and E. C. Van Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9(3):143–155, 1966.

[23] Z. Durumeric, J. Kasten, M. Bailey, and J. A.
Halderman. Analysis of the HTTPS certificate
ecosystem. In 13th ACM Internet Measurement
Conference (IMC), 2013.

[24] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,
M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey,
and J. A. Halderman. The matter of Heartbleed. In
14th ACM Internet Measurement Conference (IMC),
2015.

[25] P. Eckersley and J. Burns. The (decentralized) SSL
observatory. Invited talk at 20th USENIX Security
Symposium, 2011.

[26] C. Evans and C. Palmer. Certificate pinning extension
for HSTS. http://tools.ietf.org/html/
draft-evans-palmer-hsts-pinning-00. Accessed: March
22, 2013.

[27] C. Gaspard, S. Goldberg, W. Itani, E. Bertino, and
C. Nita-Rotaru. SINE: Cache-friendly integrity for the
web. In 5th IEEE Workshop on Secure Network
Protocols (NPSec), pages 7–12, 2009.

[28] J. Gionta, P. Ning, and X. Zhang. iHTTP: Efficient
authentication of non-confidential HTTP traffic. In
10th International Conference on Applied Cryptography
and Network Security, pages 381–399, 2012.

[29] D. Grandon. Ashley Madison, a dating website, says
hackers may have data on millions.
http://www.nytimes.com/2015/07/21/technology/
hacker-attack-reported-on-ashley-madison-a-dating-
service.html, 2015. Accessed: September 23, 2015.

[30] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song.
ShadowCrypt: Encrypted web applications for
everyone. In 21st ACM Conference on Computer and
Communications Security (CCS), pages 1028–1039,
2014.

[31] I. Hickson. HTML5 web messaging. http://
www.w3.org/TR/2015/REC-webmessaging-20150519/.
Accessed September 23, 2015.

[32] P. Hoffman and J. Schlyter. The DNS-based
authentication of named entities (DANE) transport
layer security (TLS) protocol: TLSA. RFC 6698, 2012.

[33] L. Ingram and M. Walfish. TreeHouse: JavaScript
sandboxes to help web developers help themselves. In
2012 USENIX Annual Technical Conference. USENIX
Association, 2012.

[34] C. Jackson and A. Barth. Beware of finer-grained
origins. In Web 2.0 Security and Privacy (W2SP), 2008.

[35] V. Jacobson. A new way to look at networking.

https://www.youtube.com/watch?v=oCZMoY3q2uM,
2006.

[36] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In 5th ACM International Conference
on emerging Networking EXperiments and Technologies
(CoNEXT), 2009.

[37] G. Keizer. Hackers spied on 300,000 Iranians using fake
Google certificate. Accessed: 27 October, 2015.

[38] G. Keizer. Apple’s OS X ‘Rootpipe’ patch flops, fails to
fix flaw. http://www.computerworld.com/article/
2912619/mac-os-x/
apples-os-x-rootpipe-patch-flops-fails-to-fix-flaw.html,
2015. Accessed: September 23, 2015.

[39] Keybase. https://keybase.io/. Accessed: September 23,
2015.

[40] LastPass. LastPass security notice.
https://blog.lastpass.com/2015/06/
lastpass-security-notice.html/, 2015. Accessed:
September 23, 2015.

[41] C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting:
Securely serving data from untrusted caches. Computer
Networks, 48(5):763–779, 2005.

[42] Let’s Encrypt. https://letsencrypt.org/. Accessed:
September 23, 2015.

[43] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu.
When HTTPS meets CDN: A case of authentication in
delegated service. In 35th IEEE Symposium on Security
and Privacy, pages 67–82, 2014.

[44] LinkedIn. An update on LinkedIn member passwords
compromised. http://blog.linkedin.com/2012/06/06/
linkedin-member-passwords-compromised/, 2012.
Accessed: September 23, 2015.

[45] S. Maffeis, J. C. Mitchell, and A. Taly. Object
capabilities and isolation of untrusted web applications.
In 31st IEEE Symposium on Security and Privacy,
pages 125–140. IEEE, 2010.

[46] J. Manyika and C. Roxburgh. The great transformer:
The impact of the internet on economic growth and
prosperity. McKinsey Global Institute report, 2011.
http://www.mckinsey.com/industries/high-tech/
our-insights/the-great-transformer.

[47] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield,
S. McKune, A. Rey, J. Scott-Railton, R. Deibert, and
V. Paxson. An analysis of China’s “Great Cannon”. In
5th USENIX Workshop on Free and Open
Communications on the Internet (FOCI), 2015.

[48] M. Marlinspike. SSL and the future of authenticity.
Black Hat USA, 2011.

[49] M. Marlinspike and T. Perrin. Trust assertions for
certificate keys. Internet Draft, 2012.
https://tools.ietf.org/html/draft-perrin-tls-tack-00.

[50] L. Meyerovich and B. Livshits. ConScript: Specifying
and enforcing fine-grained security policies for
JavaScript in the browser. In 31st IEEE Symposium on
Security and Privacy, pages 481–496, 2010.

[51] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and
M. Stay. Caja: Safe active content in sanitized
JavaScript. http://google-caja.googlecode.com/files/
caja-spec-2008-01-15.pdf, Jan. 2008.

[52] I. Moiseenko. Fetching content in named data

networking with embedded manifests. Technical Report
NDN-0025, NDN, September 2014.

[53] T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and
T. Jaeger. Scalable web content attestation. IEEE
Transactions on Computers, 61(5):686–699, 2012.

[54] Mozilla. Same-origin policy.
https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin policy. Accessed September 23,
2015.

[55] Mozilla. SubtleCrypto. https://developer.mozilla.org/
en-US/docs/Web/API/SubtleCrypto. Accessed:
September 23, 2015.

[56] NDN Team. Named Data Networking (NDN) Project.
Technical Report NDN-0001, Named Data Networking
Project, Oct. 2010. http://named-data.net/wp-content/
uploads/TR001ndn-proj.pdf.

[57] Netflix. Netflix Open Connect.
https://openconnect.netflix.com/. Accessed: September
23, 2015.

[58] OWASP. OWASP top 10 project. https://
www.owasp.org/index.php/Top 10 2013-Top 10, 2013.
Accessed: September 23, 2015.

[59] Ponemon Institute. 2015 cost of data breach study:
Global analysis, May 2015.
http://www-03.ibm.com/security/data-breach/.

[60] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow
waist of the future Internet. In 9th ACM SIGCOMM
Workshop on Hot Topics in Networks. ACM, 2010.

[61] E. Rescorla. HTTP over TLS. RFC 2818, May 2000.

[62] E. Rescorla and A. Schiffman. The secure hypertext
transfer protocol. RFC 2660, Nov. 1999.

[63] S. Ruoti, J. Andersen, S. Heidbrink, M. O’Neill,
E. Vaziripour, J. Wu, D. Zappala, and K. Seamons.
“We’re on the same page”: A usability study of secure
email using pairs of novice users. In 34th ACM
Conference on Human Factors and Computing Systems
(CHI), San Jose, CA, 2016. ACM.

[64] S. Ruoti, J. Andersen, T. Hendershot, D. Zappala, and
K. Seamons. Private Webmail 2.0: Simple and
easy-to-use secure email. In 29th ACM User Interface
Software and Technology Symposium (UIST), Tokyo,
Japan, 2016. ACM.

[65] S. Ruoti, J. Andersen, T. Monson, D. Zappala, and
K. Seamons. Messageguard: A browser-based platform
for usable, content-based encryption research. arXiv
preprint arXiv:1510.08943, 2016.

[66] S. Ruoti, N. Kim, B. Burgon, T. Van Der Horst, and
K. Seamons. Confused Johnny: when automatic
encryption leads to confusion and mistakes. In 9th
Symposium on Usable Privacy and Security (SOUPS),
2013.

[67] M. D. Ryan. Enhanced certificate transparency and
end-to-end encrypted mail. In 2014 ISOC Network and
Distributed System Security Symposium (NDSS).
Internet Society, 2014.

[68] W. Shang, A. Afanasyev, , and L. Zhang. The design
and implementation of the NDN protocol stack for
RIOT-OS. Technical Report NDN-0043, NDN, July
2016.

[69] W. Shang, Y. Yu, R. Droms, and L. Zhang. Challenges
in IoT networking via TCP/IP architecture. Technical
Report NDN-0038, NDN, February 2016.

[70] W. Shang, Y. Yu, T. Liang, B. Zhang, , and L. Zhang.
NDN-ACE: Access control for constrained
environments over named data networking. Technical
Report NDN-0036, NDN, December 2015.

[71] S. Sheng, L. Broderick, C. A. Koranda, and J. J.
Hyland. Why johnny still can’t encrypt: evaluating the
usability of email encryption software. In 2nd
Symposium On Usable Privacy and Security (SOUPS),
2006.

[72] J. Silver-Greenberg, M. Goldstein, and N. Perlroth.
JPMorgan Chase hacking affects 76 million households.
The New York Times, 2014.
http://dealbook.nytimes.com/2014/10/02/
jpmorgan-discovers-further-cyber-security-issues/.
Accessed: September 23, 2015.

[73] K. Singh, H. J. Wang, A. Moshchuk, C. Jackson, and
W. Lee. Practical end-to-end web content integrity. In
21st International World Wide Web Conference
(WWW), pages 659–668, 2012.

[74] R. Sleevi and M. Watson. Web cryptography API.
http://www.w3.org/TR/2014/
CR-WebCryptoAPI-20141211/, 2014. Accessed:
September 23, 2015.

[75] C. Soghoian and S. Stamm. Certified lies: Detecting
and defeating government interception attacks against
SSL. In Financial Cryptography and Data Security,
pages 250–259. Springer, 2012.

[76] Symantec. Symantec Internet security threat report.
http://eval.symantec.com/mktginfo/enterprise/
white papers/b-whitepaper exec summary internet
security threat report xiii 04-2008.en-us.pdf, 2008.
Accessed: September 23, 2015.

[77] M. Ter Louw, K. T. Ganesh, and V. Venkatakrishnan.
AdJail: Practical enforcement of confidentiality and
integrity policies on web advertisements. In 19th
USENIX Security Symposium, pages 371–388, 2010.

[78] C. Terhune. UCLA Health System data breach affects
4.5 million patients. Los Angeles Times, 2015.
http://www.latimes.com/business/
la-fi-ucla-medical-data-20150717-story.html. Accessed:
September 23, 2015.

[79] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and
W. Joosen. WebJail: Least-privilege integration of
third-party components in web mashups. In 27th
Annual Computer Security Applications Conference
(ACSAC), pages 307–316, 2011.

[80] E. Vaziripour, M. O’Neill, J. Wu, S. Heidbrink,
K. Seamons, and D. Zappala. Social authentication for
end-to-end encryption. In 2nd Workshop on “Who Are
You?! Adventures in Authentication” (WAY) at the
Symposium on Usable Privacy and Security, 2016.

[81] L. Wang, I. Moiseenko, and L. Zhang. NDNlive and
NDNtube: Live and prerecorded video streaming over
NDN, April 2015.

[82] D. Wendlandt, D. G. Andersen, and A. Perrig.
Perspectives: Improving SSH-style host authentication
with multi-path probing. In USENIX Annual Technical
Conference, pages 321–334, 2008.

[83] M. West and D. Veditz. Content security policy.
https://w3c.github.io/webappsec/specs/
content-security-policy/, 2015. Accessed: September 23,
2015.

[84] A. Whitten and J. D. Tygar. Why Johnny can’t
encrypt: A usability evaluation of PGP 5.0. In 8th
USENIX Security Symposium, 1999.

[85] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, L. Zhang,
et al. Schematizing trust in named data networking. In
2nd International Conference on Information-Centric
Networking, pages 177–186. ACM, 2015.

[86] Y. Yu, A. Afanasyev, and L. Zhang. NDN DeLorean:

An authentication system for data archives in named
data networking. Technical Report NDN-0040, NDN,
May 2016.

[87] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,
k. claffy, P. Crowley, C. Papadopoulos, L. Wang, and
B. Zhang. Named Data Networking. ACM SIGCOMM
Computer Communication Review (CCR), 44(3):66–73,
July 2014.

