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Abstract— Because wireless networks use shared communi-
cation channels, contention and interference can significantly
degrade throughput and fairness. Optimal rate control algo-
rithms can be designed for wireless networks by modeling the
contention between routers using capacity constraints andsolv-
ing a convex optimization problem. In this work we develop a
more accurate network model that directly incorporates partial
interference as a receiving constraint, so that it is modeled
separately from contention. We show that using this new model
leads to a convex optimization problem when formulated using
link rates, but it is non-convex when formulated using flow
rates. We then use numerical results to illustrate situations when
modeling partial interference separately yields significantly
higher effective utilities in practical network topologies.

I. I NTRODUCTION

Wireless mesh networking is a promising technology
that can be used to provide inexpensive communications
infrastructure for both developing countries and for urban
environments. A typical wireless mesh network consists of
stationary routers connected to each other through wireless
links. Communication paths, called flows, in a typical mesh
network span multiple wireless hops before reaching the
wired network or destination.

It is well known that using a shared communications
channel in multi-hop wireless networks can significantly
degrade throughput and fairness. Because wireless trans-
missions are broadcast in nature, competing transmissions
cause contention and interference, which often results in poor
throughput and unfairness between competing flows [1], [2].

Some research seeks to improve the capacity of a mesh
network by introducing multiple radios operating on different
frequencies, or by manipulating the transmission power of
the radios in order to reduce contention [3], [4]. We view
this work as complementary to ours. We limit the scope
of our problem to designing a transmission rate controller
for either communication flows or links, where algorithms
manipulating routes, radio frequencies, antennae direction,
or transmission power are already employed, and such algo-
rithms are quasi-static with respect to the rate controller.

One approach to solving this problem is to form a model
representing the wireless network that imposes constraints
on the rates, and then design the controller to compute a
distributed algorithm that solves an optimization problem. In
wireless networks, these constraints are primarily imposed
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by the channel capacity among competing nodes [5]. By
formulating the problem so that it is convex, well estab-
lished techniques can, in most cases, be applied to design
a distributed algorithm that computes the rates [6].

The objective function in the optimization problem must
yield high throughput while also providing fairness between
flows. It is well known that these two goals are conflicting
for wireless networks — to provide fairness, some flows may
need to sacrifice throughput. A systematic way of achieving
a balance between the two is by constructing the objective
function as a sum of rate utility functions, which are concave
and strictly increasing. The type of fairness is determinedby
the utility function’s degree of concavity. Several notions of
fairness and their corresponding utility functions are well
established in the literature [7], [8].

Traditional graph-based models impose resource con-
straints using a contention graph, where communication links
between nodes are represented by vertices and contention is
represented by edges. Two links are said to contend with
each other if they cannot be active at the same time without
causing collisions or interference. Maximal cliques are the
largest sets of links where each link in a set contends with
all others in that set. Within each maximal clique, only one
link can transmit at a time [9], [10], [11].

While this approach does lead to convex problem for-
mulations, it does not accurately represent the interference
relationship among links. Contention occurs when sending
nodes can sense one another and thus take turns, whereas
interference occurs when twonon-contending senders trans-
mit simultaneously, causing a packet to be corrupted at a
receiving node. A recent measurement study reveals that
interference is typical andpartial [12]. This means that
transmissions from an interfering node may corrupt only a
fraction of the packets received at a remote node. Modeling
interference as contention results in a misleading optimiza-
tion problem, where capacity may be wasted and actual
receiving rates may be far from fair.

Several recent papers have considered partial interference
when modeling wireless mesh networks [13], [14], but they
are designed for offline prediction of the expected perfor-
mance of a network, given a vector of input traffic demands.
We are concerned with online rate control algorithms, where
rates must be adjusted dynamically as flows enter and leave
the network.

In this paper, we seek to answer a fundamental question in
modeling wireless mesh networks as applied to rate control:
is it important to model partial interference separately from
contention? We first present the framework for traditional



Fig. 1. A network topology graph.

binary interference models, and explain their limitations.
Next, we present our new partial interference model, and
formulate the optimization problem. We show that this leads
to a convex problem when using a link-based formulation
and restricting the objective to proportional fairness, but
leads to a non-convex problem when using a flow-based
formulation. We then use standard techniques to derive a
distributed algorithm for the convex problem. Finally, we
use numerical results in common network topologies to show
that the binary interference models are overly conservative,
resulting in sub-optimal rates and significant degradation
in network utility. Based on our results, we illustrate the
conditions under which the effects of partial interference
cannot be ignored and should be modeled accurately.

II. B INARY INTERFERENCEMODEL

Existing graph-based models conservatively characterize
interference as a binary effect [10], [11]. Under this model,
an interfering node is assumed to corrupt all of the packets
received at a remote node, while non-interfering nodes have
no effect. Binary interference is represented in a contention
graph by simply treating it as contention, that is, if one link
interferes with another, neither may send at the same time.

A. Resource Constraints

To illustrate how the binary interference model derives
resource constraints, it is useful to consider an example.
Fig. 1 shows a sample network topology, denoting active
transmission links, transmission ranges, carrier sense ranges,
and interference ranges. Nodes within transmission range of
each other, such as A and B, can exchange messages. Nodes
within carrier sense range, such as D and F, can detect that
the channel is busy when one of them is transmitting, but do
not necessarily exchange messages. Interference occurs when
a node such as D is within interference range of a receiving
node such as C. Nodes that are not within carrier sense
range of each other can still cause interference, meaning
that they cannot simply exchange messages or sense each
other to coordinate their use of the channel. In practice, the
carrier sense range is typically larger than the transmission
range, and the interference range is larger than both. A link
is a directional line of communication between two adjacent
nodes. A flow is a sequence of links used for communication
between users at two distinct nodes.

A contention graph transforms this representation of a
network into a new graph that represents the contention and
interference constraints [9], [10]. Fig. 2 shows a contention
graph for Fig. 1. Vertices in the contention graph correspond

Fig. 2. A contention graph for the sample network topology, based on the
binary interference model.

to wireless links, and an edge between two links indicates
that the links cannot be active at the same time, due to
contention or interference.

Once a contention graph is created, resource constraints
can be determined using maximal cliques. Any pair of links
in the same maximal clique is prohibited from transmitting
concurrently in order to avoid collisions. Thus, for each
clique there is a resource constraint, in terms of air time, rep-
resented by the clique capacity. Fig. 2 shows three maximal
cliques for our sample network, with corresponding resource
constraints, wheresl is the sending rate of linkl, and cj
is the capacity of cliquej. Clique capacities and rates are
typically normalized to a value between zero and one. Clique
capacities are usually between 0.8 and 0.9, depending on the
efficiency of the MAC protocol.

B. Objective Function

When using a binary interference model, the modeler has a
choice of objective functions. One could choose to optimize
as a function of link utilities, assuming that all links have
an infinite backlog of packets to send. A typical objective
function in this case is

max f(s) =
∑

l∈L

U(sl),

where s is the vector of sending rates for links,L is the
set of links in the network, andU is the utility function. In
this case, the modeler is choosing to maximize the network
utility, regardless of how flows map to links. Alternatively,
one could choose to optimize as a function of flow utilities,
assuming that all flows have an infinite backlog of packets
to send. Note that this assumption constrains hops along a
flow to only send as much data as they receive. In this case,
the objective function becomes

max f(s) =
∑

t∈T

U(st),

wheres is the vector of source rates for flows, andT is the
set of flows in the network. This optimizes based on the rate
given to each individual flow.

Flow-based utilities may be more favorable than link-
based utilities because they more accurately model realizable
rate allocations. If links do not actually have an infinite
backlog of data to send, but are limited by how much data
earlier links in a flow send, link-based utilities would yield
rate allocations for some links that are not realizable. This



Fig. 3. A contention graph for the sample network topology, based on the
partial interference model.

can easily lead to situations where capacity is wasted that
could have been assigned to other links.

Flow-based utilities may also be preferred because they
provide flow-level fairness. Link-based rate control is obliv-
ious to the number of flows using the link. For example, if
two links are in the same clique, they may each be assigned
a rate of 0.5. However, one link may have 10 flows and
another link only 1 flow. In this case, the 10 flows would get
a significantly unfair allocation of resources. Despite these
disadvantages, allocating based on links may be preferablein
some situations, such as when opportunistic routing causes
several paths to be used simultaneously [15].

The binary interference model leads to convex problems
when modeling fairness based on either links or flows, as
long as the utility function is strictly concave [7]. With binary
interference, constraints are always linear functions. Thus,
standard techniques in convex programming can be used to
derive distributed algorithms [6]. However, this model suffers
from the problem that finding the set of maximal cliques for
a graph is NP-hard. Distributed rate control algorithms often
use approximations, for example assigning all links within
two hops of each other to the same clique [16]. This is a
very conservative heuristic that may overly restrict rates.

III. PARTIAL INTERFERENCEMODEL

To explore the impact of partial interference on optimal
rate control for wireless networks, we have developed a
partial interference model. In this case, an interfering node
may corrupt a fraction of the packets received at a remote
node. Partial interference is not represented in the contention
graph, but is instead represented in a directional interference
map, and is incorporated as an additional constraint or as
part of the objective function.

A. Resource Constraints

To model partial interference accurately, we separate con-
tention constraints from interference constraints. Contention
is represented as an undirected edge between two vertices
(links), and interference is modeled as a directional edge
from the interfering link to the receiving link that is affected
by the interference. The modified contention graph corre-
sponding to Fig. 1 is shown in Fig. 3. Maximal cliques are
then determined as before. Clique constraints, as shown in
the figure for Clique 1 and Clique 2, are the same as in the
binary interference model, but the constraint between links 2
and 3 is modeled separately.

Interference relationships impose constraints on the re-
ceiving rates, as illustrated in the figure, whererl is the
effective receiving rate of linkl, sl is the sending rate
of link l, dl is the inherent loss of the link (e.g. due to
obstacles or noise), and the term(1 − ailsi) is the loss
of link l due to interference from an interfering nodei.
This constraint is taken from a recent measurement study
of wireless mesh networks showing that partial interference
from one link can be modeled as a linear function [12].
The interference factorail represents the degree of partial
interference inflicted by the interferer. It is in the range
0 ≤ ail ≤ 1, and is directional, meaning thatail may
be significantly different fromali. Interfering factors can
be experimentally measured between any pair of links in
a network by methods suggested in [12], [13], constructing
an interference map for the network. A study shows that
interfering transmissions are independent of each other, and
the joint impact of interferers to a receiving node is merely
the product of their isolated impacts [12].

The partial interference model is less conservative than
other graph-based approaches because more links are as-
sumed to transmit concurrently. For example, consider
links 2 and 3 in Fig. 3, and suppose link 3 corrupts 40%
of packets received at link 2. If both links transmit at the
clique capacity 1, then the sum of their effective receiving
rates becomes1+(1−0.4) = 1.6. In the binary interference
model, these links can not transmit at the same time because
they are in the same clique, resulting in a total effective
receiving rate of1. The partial interference model thus allows
for significantly higher utilization of the network.

It is important to recognize that even complete interference
cannot properly be modeled as contention. That is, a linki
will not become a contender to a remote linkl even if the
interference factorail = 1. Consider again the relationship
between links 2 and 3 in Fig. 3. Supposea32 = 1. If
interference is modeled as contention, then both links will
transmit at a rate of 0.5. However, the total effective receiving
rate will ber2+r3 = (0.5)(0.5)+0.5 = 0.75. With the partial
interference model, it is easy to see that link 2 should send
at the full rate regardless of link 3’s rate. If link 3 continues
to send at a rate of0.5, then the total effective receiving
rate will be(1)(0.5)+0.5 = 1. Thus the partial interference
model will result in higher utility.

B. Objective Function

When modeling partial interference, it is more accurate to
optimize over receiving rates, because the sending and the
receiving rates may be significantly different. Based on a
recent study [12], we can model the receiving rate of a link
by multiplying the individual interference factors:

rl = dlsl
∏

i∈I(l)

(1− ailsi), (1)

where I(l) is the set of all links interfering withl. The
objective function becomes

f(r) =
∑

l∈L

U(rl),



wherer is the vector of link receiving rates andL is the set
of all links. The objective function could also be defined in
terms of the flows instead of the links.

The multiplicative term that arises in this model may
make the optimization problem non-convex, sacrificing well-
established techniques in solving convex problems. We will
show in the following section that a link-based formulation
that incorporates partial interference is still a convex problem
if proportional fairness is used. We will also demonstrate that
flow-based formulations lose their convexity when consider-
ing partial interference.

We are thus faced with a tradeoff between convexity and
accuracy when modeling partial interference. A flow-based
formulation achieves realizable rate allocations, with a sense
of fairness that is more closely correlated to user experience
in a network, but at a price of losing convexity in the
optimization problem. A link-based formulation, on the other
hand, can be convex, but the derived rate allocations may not
be realizable for a set of flows, and may give users a sense of
unfairness, especially when several flows use the same link
or when some flows have more hops than others.

IV. OPTIMIZATION PROBLEM AND SOLUTION

In this section, we first present a link-based problem for-
mulation for optimal rate control in a wireless network, and
methods to cast it as a convex problem. We also demonstrate
that a flow-based formulation leads to a non-convex problem.
At the end of this section, we show a distributed rate control
algorithm derived from the link-based convex problem.

A. Link-Based Problem Formulation

Consider the problem of finding an optimal rate allocation
that maximizes the sum of link utilities in a wireless mesh
network, which consists of a setL of stationary links. We
use the following assumptions in our formulation.

• Contention between links is binary (either fully con-
tending or not at all) and symmetric.

• Links have infinite backlog of packets to send.
• The impacts of interference from links are independent

and linear with respect to each interferer’s sending rate,
as described in (1).

For the ease of reading, we provide a list of notations and
their descriptions for this problem in Table I.

Given a contention graph with maximal cliquesC and an
interference mapA, the optimization problem maximizes the
sum of link utilities, which are functions of linkreceiving
rates, in a wireless mesh network:

P : max
s

f(r) =
∑

l∈L

U(rl) (2)

subject to:
sl ≥ 0, ∀l ∈ L, (3)

rl = dlsl
∏

i∈I(l)

(1− ailsi), ∀l ∈ L, (4)

∑

l∈L(j)

sl ≤ cj , ∀j ∈ C. (5)

L The set of links in the network.
sl The sending rate of linkl.
rl The receiving rate of linkl.
dl The delivery ratio of linkl.
A The interference map, or set of interference factorsail in the

network, whereail represents linki interfering with link l.
I(l) The set of links that interfere with linkl.
F (l) The set of links that linkl interferes with.
C The set of maximal cliques in the contention graph.
L(j) The set of links in maximal cliquej.
cj The effective capacity of maximal cliquej.
C(l) The set of maximal cliques that contain linkl.
U(·) The utility function for each link or flow.

TABLE I

NOTATION USED IN THE LINK-BASED FORMULATION

We assume the utility functionU of a link is continuously
differentiable, strictly concave, monotonically increasing,
and approaches negative infinity as the argument approaches
zero from the right.

Problem P is non-convex because of the multiplicative
term in constraint 4. However, the problem can be re-
formulated by substituting (4) into the objective function.
Depending on the utility function, the problem may or may
not be convex. If we seek to maximize network utility while
maintaining proportional fairness, then we letU(·) = ln(·),
and the problem is convex. The objective function becomes

f(s) =
∑

l∈L



ln sl + ln dl +
∑

i∈I(l)

ln (1− ailsi)



. (6)

Note that the terms can be reordered and that maximizing
(6) gives the same optimal rates whether or not the delivery
ratiosdl are considered, so that the objective function may
be reformulated as

f ′(s) =
∑

l∈L



ln sl +
∑

i∈F (l)

ln (1− alisl)



. (7)

Thus, we can reformulate problemP as a convex problem
P′

P′ : max f ′(s) (8)

subject to:
sl ≥ 0, ∀l ∈ L, (9)

∑

l∈L(j)

sl ≤ cj , ∀j ∈ C. (10)

B. Non-convexity in the Flow-Based Formulation

The flow-based formulation differs from the link-based
formulation in that it maximizes end receiving rates of multi-
hop transport-layer flows, where only the source link of each
flow has an infinite backlog. For the ease of reading, we
provide a list of notations and their descriptions for this
problem in Table II.

The optimization problem for this formulation is

Q : max
s

f(r) =
∑

t∈T

U(rtend) (11)



T The set of transport-layer flows in the network.
T (l) The set of flows traversing linkl.
rt
end

The end receiving rate of flowt.
st
k

The sending rate of flowt at hopk.
rt
k

The receiving rate of flowt at hopk.
k(l, t) Hop k of flow t, corresponding with linkl.
h(t) The length of flowt in hops.

TABLE II

NOTATION USED IN THE FLOW-BASED FORMULATION

subject to:

stk ≥ 0, ∀t ∈ T, k = 1, . . . , h(t), (12)

stk = rtk−1, ∀t ∈ T, k = 2, . . . , h(t), (13)
∑

l∈L(j)

∑

t∈T (l)

stk(t,l) ≤ cj , ∀j ∈ C, (14)

where eachrtk is a function of sending rates, according to (4).
Constraint (13) makes problemQ non-convex. This con-

straint arises because in this formulation there is no longer an
assumption that all links have an infinite backlog of packets,
as interference at an earlier hop causes the next hop to have
less data available to send. In order to achieve feasible rate
allocations for flows, we require that a flow is transmitted
at the same rate as it is received at each hop, otherwise
congestion or starvation would occur along its path.

Because this problem is non-convex, a distributed solution
may not be as straightforward or efficient. We note, however,
that problemQ could be approximated by relaxing the
condition in (13) and including all hops in the objective
function, with carefully assigned weights on each utility,thus
casting the problem in a form similar toP′. This could be a
topic of further research, but we do not pursue it here.

C. Distributed Algorithm

We derive a distributed algorithm to solve problemP′,
based on the methods presented in [6]. This problem meets
Slater’s condition [17], giving us strong duality. We seek
to solve the problem in a distributed fashion by finding
the solution to the dual using Lagrangian relaxation. The
Lagrangian of problemP′ is

L(s, λ) = f ′(s) +
∑

j∈C

λj



cj −
∑

l∈L(j)

sl





= f ′(s)−
∑

j∈C

∑

l∈L(j)

λjsl +
∑

j∈C

cjλj

= f ′(s)−
∑

l∈L

sl
∑

j∈C(l)

λj +
∑

j∈C

cjλj

=
∑

l∈L

g(sl, λ) +
∑

j∈C

cjλj ,

whereλj are Lagrange multipliers for constraints (5) and

g(sl, λ) = ln sl +
∑

i∈F (l)

ln (1− alisl)− sl
∑

j∈C(l)

λj . (15)

Note thatg(sl, λ) is concave insl and approaches−∞
to the left and right, so that for a givenλ there is always a
unique maximizer

s̄l(λ) = argmax
sl

g(sl, λ). (16)

This can easily be found by taking the derivative ofg with
respect tosl and setting it equal to zero:

1

s̄l
−

∑

i∈F (l)

ali
(1− alis̄l)

=
∑

j∈C(l)

λj . (17)

We can use efficient algorithms, such as Newton’s method,
to solve for the optimal rates according to (17). Linkl does
not need any information other than theλs for each maximal
clique to whichl belongs in order to evaluate (17).

The dual function to problemP′ is given by

Z(λ) = max
s

L(s, λ)

= max
s

∑

l∈L

g(sl, λ) +
∑

j∈C

cjλj

=
∑

l∈L

max
sl

g(sl, λ) +
∑

j∈C

cjλj

=
∑

l∈L

g(s̄l(λ), λ) +
∑

j∈C

cjλj ,

and the dual problem is

D : minZ(λ) (18)

subject to:
λ � 0. (19)

We use the gradient projection method to iteratively obtain
the optimalλ for the problem. From Danskin’s theorem [18],
we know that

∂Z

∂λj
=

∂

∂λj



f ′(s) +
∑

i∈C

λi



ci −
∑

l∈L(i)

sl









s=s̄

= cj −
∑

l∈L(j)

s̄l. (20)

Using a step sizeγ in the negative direction of the gradient
gives the algorithm

λj(k+1) = max



0, λj(k)− γ(cj −
∑

l∈L(j)

s̄l(k))



, (21)

where
s̄l(k) = s̄l(λ(k)).

Each link in a maximal clique can share with each other
their current values of̄sl, which is only local information,
and then compute the nextλj .

The convergence of the algorithm is well established in the
literature, even when it is asynchronous. Onceλ converges
to the optimal solution,λ∗, of the dual problem, the optimal
solution,s∗, to the primal problem is given by

s∗ = s̄(λ∗).



V. NUMERICAL RESULTS

We seek to determine in what situations the partial inter-
ference model outperforms binary interference models, and
by how much. We use MATLAB to numerically compute so-
lutions to the rate optimization problem for several different
wireless networks. We use network topologies that represent
basic situations — these can be thought of as building blocks
out of which larger topologies can be formed.

We introduce three binary interference models that we
compare with the partial interference (PI) model. The
interference-as-contention (IC) model replaces any interfer-
ence mappings with contention, no matter how small the
interference factora. The interference-ignored (II) model
simply ignores any interference mappings and models only
contention. The adaptive contention (AC) model follows
the IC model or the II model, depending on which model
has higher performance. Thus the AC model gives binary
contention the benefit of the doubt — it ignores interference
when this provides good performance and models it as
contention otherwise.

A. Performance metric

To compare these different models, we define a perfor-
mance metric that is based on the objective function of the PI
model, using receiving rates. We justify this by recognizing
that receiving rates are what ultimately matters for users of
the network. Data that is sent but is lost due to interferenceis
not considered useful. Thus the comparison should be made
between the performance observed with PI-derived receiving
ratesr∗ and the receiving ratesr′ actually obtained by the
other model from its sending ratess′, according to the PI
constraint on receiving rates.

For ease of interpretation, we consider the ratioR of
performancesP , that is,

R = P (r∗)/P (r′). (22)

Thus, the comparison will simply read that the PI model
outperforms the other modelR times.

The PI model uses proportional fairness, so that its objec-
tive function is

f(r) =
∑

l∈L

ln rl. (23)

However, scores obtained fromf(r) range from−∞ to zero,
making it non-intuitive to ascertain how significant a better
score might be in comparison to a worse score. We introduce
the performance function

P (r) = ef(r)/|L|, (24)

where |L| is the number of links in the network. Note that
if f(r∗) > f(r′), then clearlyP (r∗) > P (r′), maintaining
the ordering of feasible rate vectorsr, based on the objective
function scores. Furthermore, note thatP turns out to be the
geometric mean of receiving rates, which ranges between
zero and one, and is normalized with respect to the size of the
network. Therefore, we study the ratioR of performances,
as denoted in (24), between the PI model and other models
for various network topologies.

0

1

2

I

a

(a) I links interfering with a
single link.

0

1

2
N

Clique

a

(b) N contenders in a clique
with one interferer.

Fig. 4. Topologies used for numerical results.

B. Results

We consider three generic network topologies and plot
R for each topology and for each contention model being
compared with the PI model. Each topology is represented in
the figures as a combined contention graph and interference
map, according to the PI model. Clique capacities in each
topology are allc = 0.85.

In all cases, the IC model never does as well as the PI
model because modeling interference as contention is too
conservative. For low values of interference, it is better to
let links send at faster rates and suffer some packet loss. At
high values of interference, it is better to have the interfered
link send at a faster rate than the interferer, to provide better
performance and fairness. However, modeling interferenceas
contention is often better than ignoring it when interference
is high. Thus in most cases, the combined AC model follows
the II model for low values of interference and follows the
IC model for high values of interference.

Fig. 4(a) shows the first topology, whereI links interfere
with a single link with a common interference factora, but do
not interfere with each other. Fig. 5(a), 5(b), and 5(c) plotR
for this topology for the PI model against the IC, II, and AC
models, respectively. The dotted curves show whereR begins
to be greater than one. Interestingly, the PI model and the II
model perform exactly the same for values ofa below 0.59.
This is because, for low values ofa, the cost of interference
is offset by the gain of the interferer sending at full capacity.
Thus, both the PI model and the II model calculate sending
rates at full capacity for each link. For larger values ofa and
I, the PI model outperforms the binary interference models
more than 1.5 times.

Fig. 4(b) shows the second topology, where a single link
has interference factora on N links that contend in a single
clique. Fig. 6(a), 6(b), and 6(c) plotR for this topology for
the PI model against the IC, II, and AC models, respectively.
The dotted curves show whereR begins to be greater than
one. The PI model starts performing better than the II model
at much lower values ofa whenN is large. This is due to
the fact that the contending links already have small rates as
a consequence of sharing the medium. Utilities are lowered
much more by interference when sending rates are small.
Thus, even for low values ofa, the PI model does not
calculate sending rates at full capacity. However, for higher
values ofa andN , the PI model outperforms the IC model
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Fig. 5. Numerical results forI interferers on one link.
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Fig. 6. Numerical results forN contenders with one interferer.

only about 1.1 times.
To demonstrate the worth of the PI model, we consider a

topology combining features of the first two, whereI links
have a fixed interference factora = 0.4 on N links that
contend in a single clique. Fig. 7(a), 7(b), and 7(c) plotR
for this topology for the PI model against the IC, II, and
AC models, respectively. Experimental results show that it
is typical for interference factors to range anywhere between
zero and one in a real network, with usually at least one
interferer on a link having a factor of at leasta = 0.8, so
choosinga = 0.4 in this topology is a somewhat conservative
comparison [12]. The combined effect of several interferers
and several contenders causes the PI model to perform
significantly better than the binary interference models.

VI. L IMITATIONS

We model partial interference according to a well-known
measurement study [12], and this model might generate
inaccurate interference degradation in some scenarios. For
example, if links 1 and 2 share the same sending node, and
both have interference factora on link 0, the actual receiving

rate of link 0 is r0 = s0(1 − a(s1 + s2)), since links 1
and 2 cannot send at the same time. Our model predicts
r0 = s0(1 − as1)(1 − as2), so some accuracy is sacrificed
in that regard.

Our model is also limited by our restriction to objective
functions that provide proportional fairness. We make this
restriction in order to guarantee convexity in the optimization
problem.

VII. C ONCLUSIONS

We have presented a partial interference model for op-
timal rate control in multi-hop wireless networks. This new
model directly incorporates partial interference as a receiving
constraint, so that it is modeled separately from contention.
This leads to a convex rate control problem when formulated
with link rates, but a non-convex problem when formulated
with flow rates. Using standard techniques, we derive a
distributed rate control algorithm for the link formulation.
Numerical results on typical network topologies show that it
is never correct to model partial interference as contention.
In some cases, when partial interference is low, it can be
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Fig. 7. Numerical results forI interferers andN contenders, witha = 0.4.

safely ignored. However, as the number of contenders and
the number of interferers grows, it becomes increasingly
important to model partial interference accurately, even for
small levels of interference.

The partial interference model can be used as the basis
for a number of interesting wireless network problems.
Joint routing and rate control, link-layer scheduling, channel
assignment for multiple radio networks, and transmission
power control problems can all benefit from an accurate
model of relationships among links. In addition, the rate
control problem we have presented here needs additional
work. We plan to design an efficient implementation and to
verify numeric performance gains on a wireless mesh testbed.
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