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Abstract— Because wireless networks use shared communi- by the channel capacity among competing nodes [5]. By
cation channels, contention and interference can significaly  formulating the problem so that it is convex, well estab-
degrade throughput and fairess. Optimal rate control alge  |ispeqd techniques can, in most cases, be applied to design

rithms can be designed for wireless networks by modeling the
contention between routers using capacity constraints andolv-
ing a convex optimization problem. In this work we develop a
more accurate network model that directly incorporates patial
interference as a receiving constraint, so that it is modet
separately from contention. We show that using this new mode
leads to a convex optimization problem when formulated usig
link rates, but it is non-convex when formulated using flow
rates. We then use numerical results to illustrate situatias when
modeling partial interference separately yields significatly
higher effective utilities in practical network topologies.

a distributed algorithm that computes the rates [6].

The objective function in the optimization problem must
yield high throughput while also providing fairness betwee
flows. It is well known that these two goals are conflicting
for wireless networks — to provide fairness, some flows may
need to sacrifice throughput. A systematic way of achieving
a balance between the two is by constructing the objective
function as a sum of rate utility functions, which are coreeav
and strictly increasing. The type of fairness is determibgd

the utility function’s degree of concavity. Several nosoof
fairness and their corresponding utility functions are Iwel

Wireless mesh networking is a promising technologgstablished in the literature [7], [8].
that can be used to provide inexpensive communications Traditional graph-based models impose resource con-
infrastructure for both developing countries and for urbaftraints using a contention graph, where communicatids lin
environments. A typical wireless mesh network consists dietween nodes are represented by vertices and contention is
stationary routers connected to each other through wiseletgpresented by edges. Two links are said to contend with
links. Communication paths, called flows, in a typical mesigach other if they cannot be active at the same time without
network span multiple wireless hops before reaching theausing collisions or interference. Maximal cliques are th
wired network or destination. largest sets of links where each link in a set contends with
It is well known that using a shared communication&!l others in that set. Within each maximal clique, only one
channel in multi-hop wireless networks can significantlyink can transmit at a time [9], [10], [11].
degrade throughput and fairness. Because wireless transWhile this approach does lead to convex problem for-
missions are broadcast in nature, competing transmissiofi#ilations, it does not accurately represent the intertexen
cause contention and interference, which often resultsan p relationship among links. Contention occurs when sending
throughput and unfairness between competing flows [1], [2lodes can sense one another and thus take turns, whereas
Some research seeks to improve the capacity of a mekerference occurs when twn-contending senders trans-
network by introducing multiple radios operating on difiat Mit simultaneously, causing a packet to be corrupted at a
frequencies, or by manipulating the transmission power d¢gceiving node. A recent measurement study reveals that
the radios in order to reduce contention [3], [4]. We viewnterference is typical angartial [12]. This means that
this work as complementary to ours. We limit the scop&ansmissions from an interfering node may corrupt only a
of our problem to designing a transmission rate controllgffaction of the packets received at a remote node. Modeling
for either communication flows or links, where algorithmdnterference as contention results in a misleading optmiz
manipulating routes, radio frequencies, antennae danecti tion problem, where capacity may be wasted and actual
or transmission power are already employed, and such alg&ceiving rates may be far from fair.
rithms are quasi-static with respect to the rate controller ~ Several recent papers have considered partial interferenc
One approach to solving this problem is to form a modevhen modeling wireless mesh networks [13], [14], but they
representing the wireless network that imposes conssrairi® designed for offline prediction of the expected perfor-
on the rates, and then design the controller to computeance of a network, given a vector of input traffic demands.
distributed algorithm that solves an optimization problém We are concerned with online rate control algorithms, where

wireless networks, these constraints are primarily imdoséﬁtes mustkbe adjusted dynamically as flows enter and leave
the network.

In this paper, we seek to answer a fundamental question in
modeling wireless mesh networks as applied to rate control:
is it important to model partial interference separatetyndr
contention? We first present the framework for traditional

I. INTRODUCTION
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Fig. 1. A network topology graph.
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Fig. 2. A contention graph for the sample network topolog@sdd on the
binary interference model.

binary interference models, and explain their limitations
Next, we present our new partial interference model, and

formulate the optimization problem. We show that this leadg wireless links, and an edge between two links indicates
to a convex problem when using a link-based formulatiofhat the links cannot be active at the same time, due to
and restricting the objective to proportional fairnesst busgntention or interference.

leads to a non-convex problem when using a flow-based once a contention graph is created, resource constraints
formulation. We then use standard techniques to derive @n be determined using maximal cliques. Any pair of links
distributed algorithm for the convex problem. Finally, wejn the same maximal clique is prohibited from transmitting
use numerical results in common network topologies to showpncurrently in order to avoid collisions. Thus, for each
that the binary interference models are overly consemativclique there is a resource constraint, in terms of air tirep; r
resulting in sub-optimal rates and significant degradatiofesented by the clique capacity. Fig. 2 shows three maximal
in network Utlllty Based on our reSUItS, we illustrate th%“ques for our Samp]e network, with Corresponding reseurc
conditions under which the effects of partial interferenc@onstraints, where; is the sending rate of link, and ¢
cannot be ignored and should be modeled accurately. s the capacity of cliqug. Clique capacities and rates are
typically normalized to a value between zero and one. Clique

- _ _capacities are usually between 0.8 and 0.9, depending on the
Existing graph-based models conservatively CharaCte”ﬁficiency of the MAC protocol

interference as a binary effect [10], [11]. Under this model
an interfering node is assumed to corrupt all of the packe® Objective Function

received at a remote node, while non-interfering nodes havewhen using a binary interference model, the modeler has a
no effect. Binary interference is represented in a cortenti choijce of objective functions. One could choose to optimize
graph by simply treating it as contention, that is, if on&lin a5 a function of link utilities, assuming that all links have
interferes with another, neither may send at the same timen infinite backlog of packets to send. A typical objective
function in this case is

II. BINARY INTERFERENCEMODEL

A. Resource Constraints

To illustrate how the binary interference model derives max f(s) = »_U(sy),
resource constraints, it is useful to consider an example. leL

Fig. 1 shows a sample network topology, denoting activighere s is the vector of sending rates for links, is the
transmission links, transmission ranges, carrier semsgem  set of links in the network, and is the utility function. In

and interference ranges. Nodes within transmission rahge @is case, the modeler is choosing to maximize the network
each other, such as A and B, can exchange messages. No@i@fly, regardless of how flows map to links. Alternatively
within carrier sense range, such as D and F, can detect thafe could choose to optimize as a function of flow utilities,
the channel is busy when one of them is transmitting, but d@ssuming that all flows have an infinite backlog of packets
not necessarily exchange messages. Interference occars Wiy send. Note that this assumption constrains hops along a

a node such as D is within interference range of a receivifgbw to only send as much data as they receive. In this case,
node such as C. Nodes that are not within carrier sengige objective function becomes

range of each other can still cause interference, meaning

that they cannot simply exchange messages or sense each max f(s) = > _U(sy),

other to coordinate their use of the channel. In practice, th teT

carrier sense range is typically larger than the transonissi wheres is the vector of source rates for flows, afds the

range, and the interference range is larger than both. A lirdet of flows in the network. This optimizes based on the rate

is a directional line of communication between two adjacergiven to each individual flow.

nodes. A flow is a sequence of links used for communication Flow-based utilities may be more favorable than link-

between users at two distinct nodes. based utilities because they more accurately model réddiza
A contention graph transforms this representation of eate allocations. If links do not actually have an infinite

network into a new graph that represents the contention abdcklog of data to send, but are limited by how much data

interference constraints [9], [10]. Fig. 2 shows a contamti earlier links in a flow send, link-based utilities would el

graph for Fig. 1. Vertices in the contention graph corresborrate allocations for some links that are not realizablesThi



Interference relationships impose constraints on the re-
ceiving rates, as illustrated in the figure, whereis the

Constraints:

s,+s,<c,

S ‘ s4s,<C, effective receiving rate of linkl, s; is the sending rate
Clve 1 r=s,d,(1-a,,s,) of link [, d; is the inherent loss of the link (e.g. due to
obstacles or noise), and the terfh — a;s;) is the loss
ciique 2 of link [ due to interference from an interfering node
This constraint is taken from a recent measurement study

Fig. 3. A contention graph for the sample network topologsédil on the X . L.
pagrtial interference mgdef P pologs of wireless mesh networks showing that partial interfeeenc

from one link can be modeled as a linear function [12].
The interference factos;; represents the degree of partial
. o o interference inflicted by the interferer. It is in the range
can easily lead to situations where capacity is wasted thé\tS 4y < 1, and is directional, meaning that, may

could have been- §1§S|gned to other links. be significantly different froma;;. Interfering factors can
FI(_)w—based ut|I|t|§s may e_llso be preferred becqu;e th experimentally measured between any pair of links in
prowde flow-level fairness. Lmk_—based r_ate control isiebl a network by methods suggested in [12], [13], constructing
lous to the ngmber of ﬂOWS_ using the link. For exampI(_e, iLn interference map for the network. A study shows that
two links are in the same clique, they may each be ass"~:Jnﬁqerfering transmissions are independent of each otimer, a

a rate of 0.5. However, one link may have 10 flows ang,q joint impact of interferers to a receiving node is merely
another link only 1 flow. In this case, the 10 flows would 9ethe product of their isolated impacts [12]

a significantly unfair allocation of resources. Despitesthe

i X . ; The partial interference model is less conservative than
disadvantages, allocating based on links may be preferable o, graph-based approaches because more links are as-

some situations, such as v_vhen opportunistic routing caus€Smed to transmit concurrently. For example, consider
several Paths _to be used simultaneously [15]. links 2 and 3 in Fig. 3, and suppose link 3 corrupts 40%
The binary interference model leads to convex problems; hackets received at link 2. If both links transmit at the
when modeling faimess based on either links or flows, &§jque capacity 1, then the sum of their effective receiving
long as the utility function is strictly concave [7]. Withi&lry  ateq pecomes+ (1 —0.4) = 1.6. In the binary interference
interference, constraints are always linear functionsisTh 44| these links can not transmit at the same time because
standard techniques in convex programming can be usedgfyy are in the same clique, resulting in a total effective
derive distributed algorl_thms [6]. However, th'_s mod_elfsl:ff receiving rate ofl.. The partial interference model thus allows
from the_problem that _fln(_jlng the set of maximal f:llques fo'for significantly higher utilization of the network.
a graph is NP-hard. Distributed rate control algorithmenft 1 is'important to recognize that even complete interfeeenc
use approximations, for example assigning all links withingnnot properly be modeled as contention. That is, adink
two hops of each other to the same clique [16]. This is ;| not become a contender to a remote linleven if the
very conservative heuristic that may overly restrict rates jnterference facton,, — 1. Consider again the relationship

between links 2 and 3 in Fig. 3. Supposg, = 1. If
interference is modeled as contention, then both links will
To explore the impact of partial interference on optimatransmit at a rate of 0.5. However, the total effective réiogj
rate control for wireless networks, we have developed gate will bery+rs = (0.5)(0.5)+0.5 = 0.75. With the partial
partial interference model. In this case, an interferingeno interference model, it is easy to see that link 2 should send
may corrupt a fraction of the packets received at a remotg the full rate regardless of link 3's rate. If link 3 contésu
node. Partial interference is not represented in the ctioten to send at a rate 0f.5, then the total effective receiving
graph, but is instead represented in a directional interieg  rate will be (1)(0.5) + 0.5 = 1. Thus the partial interference
map, and is incorporated as an additional constraint or asodel will result in higher utility.
part of the objective function.

Ill. PARTIAL INTERFERENCEMODEL

B. Objective Function
A. Resource Constraints When modeling partial interference, it is more accurate to

To model partial interference accurately, we separate cofPtimize over receiving rates, because the sending and the
tention constraints from interference constraints. Cotina ~ '€C€IVing rates may be significantly different. Based on a
is represented as an undirected edge between two vertié8§ent study [12], we can model the receiving r"f‘te of a link
(links), and interference is modeled as a directional edd®y Multiplying the individual interference factors:
from the interfering link to the receiving link that is afted = disy H (1—aius;), (1)
by the interference. The modified contention graph corre-
sponding to Fig. 1 is shown in Fig. 3. Maximal cliques are ) . . . )
then determined as before. Clique constraints, as shown ‘if1€re Z(1) is the set of all links interfering with. The
the figure for Clique 1 and Clique 2, are the same as in tHfePiective function becomes
binary _interference model, but the constraint betweersliak flr) = Z Ulry),
and 3 is modeled separately. el

icl(l)



L The set of links in the network.

wherer is the vector of link receiving rates ardis the set

. L. . . | s The sending rate of link.
of all links. The objective function could also be defined in[—, The receiving rate of ink.
terms of the flows instead of the links. d; The delivery ratio of linkl.
The multiplicative term that arises in this model may A The interference map, or set of interference factggsin the

L e network, wherea;; represents link interfering with link .
make the optimization problem non-convex, sacrificing well —777—he set of finks that interfere with Tink

established techniques in solving convex problems. We will 7(1) | The set of links that linK interferes with.
show in the following section that a link-based formulation| ¢ | The set of maximal cliques in the contention graph.
that incorporates partial interference is still a convenpem fJ ) mg Zﬁggg\:;”gg;g“;ﬂ?ﬂ af(':ﬂq‘g G
if proportional fairness is used. We will also demonstra&t (1) | The set of maximal cliques that contain ik
flow-based formulations lose their convexity when consider| U(-) | The utility function for each link or flow.
ing partial interference. TABLE |

We are thus faced with a tradeoff between convexity and NOTATION USED IN THE LINK-BASED FORMULATION
accuracy when modeling partial interference. A flow-based
formulation achieves realizable rate allocations, witlease
of fairness that is more closely correlated to user expeeen

in a network, but at a price of losing convexity in theywe assume the utility functio’ of a link is continuously
optimization problem. A link-based formulation, on the eth differentiable, strictly concave, monotonically incrizegs

hand, can be convex, but the derived rate allocations may Nty approaches negative infinity as the argument approaches
be realizable for a set of flows, and may give users a sense Qf;q from the right.

unfairness, especially when several flows use the same linkp,gplem P is non-convex because of the multiplicative
or when some flows have more hops than others. term in constraint 4. However, the problem can be re-
IV. OPTIMIZATION PROBLEM AND SOLUTION formulated by substituting (4) into the objective function

Depending on the utility function, the problem may or may

In this section, we first present a link-based problem for- - i .
: . . ) ot be convex. If we seek to maximize network utility while
mulation for optimal rate control in a wireless network, and .~ ~."° : )
maintaining proportional fairness, then we &¢-) = In(),

methods to cast it as a convex problem. We also demonstrate : S .

. and the problem is convex. The objective function becomes
that a flow-based formulation leads to a non-convex problem.
At the end of this section, we show a distributed rate control

algorithm derived from the link-based convex problem. f8)=> |lsi+nd+ Y IWm(1—aus;)|. (6)

A. Link-Based Problem Formulation tel iel(l)

Consider the problem of finding an optimal rate allocatio
that maximizes the sum of link utilities in a wireless mes
network, which consists of a sdt of stationary links. We
use the following assumptions in our formulation.

« Contention between links is binary (either fully con-

tending or not at all) and symmetric. fls) = Z Ins; + Z In(1—aus) | @
« Links have infinite backlog of packets to send. tek er)
« The impacts of interference from links are independerithus, we can reformulate problefas a convex problem
and linear with respect to each interferer's sending rat®’
as described in (1). P’ : max f'(s) (8)
For_ the ease of reading, we provide a list of notations angiject to:
their descriptions for this problem in Table I.

Note that the terms can be reordered and that maximizing
36) gives the same optimal rates whether or not the delivery
ratiosd; are considered, so that the objective function may
be reformulated as

: . X . \ >0,vViel 9

Given a contention graph with maximal cliguésand an 1= Ve ©

interference mapl, the optimization problem maximizes the Z s1 <¢j, Vjel. (10)
sum of link utilities, which are functions of linkeceiving lEL())

rates, in a wireless mesh network: B. Non-convexity in the Flow-Based Formulation

P: m;cme(T) = ZU(H) 2 The flow-based formulation differs from the link-based
leL formulation in that it maximizes end receiving rates of rult

subject to: hop transport-layer flows, where only the source link of each

s>0, VieL, (3) flow has an infinite backlog. For the ease of reading, we

provide a list of notations and their descriptions for this
n=ds [[ (1-aasi), V€L, (4)  problem in Table II.
iel(l) The optimization problem for this formulation is
Z s1< ¢y, Vjel. (5) Q :max f(r) = Z U(rt,q) (11)

leL(j) teT



T The set of transport-layer flows in the network. . .
T{) | The set of flows fraversing Tk Note thatg(sl?)\) is concave |nsl.and appr(_)achesoo
v~ | The end receiving rate of flow to the left and right, so that for a giventhere is always a
st The sending rate of flow at hopk. unique maximizer
rz The receiving rate of flow at hopk.
k(7,t) | Hop k of flow t, corresponding with TinK. 51(\) = argmax g(s;, \). (16)
h(t) The length of flow¢ in hops. 51
TABLE Il This can easily be found by taking the derivativegofvith
NOTATION USED IN THE FLOW-BASED FORMULATION respect tQSl and setting it equa' to zero:
- — Aj. 17
2 T~ 2 a7
i€F( l) JjeC(l)
subject to: We can use efficient algorithms, such as Newton’s method,
. to solve for the optimal rates according to (17). Lihkoes
520, VEeT, k=1,...,h(t), (12) ' not need any information other than the for each maximal
st=rl L VteT, k=2,... h(t), (13) cligue to which] l_Jelongs in orde/r_to _evaluate an).
The dual function to probler®’ is given by
. D sen S ViEC (14) Z(\) = maxL(s,\)
leL(j) teT(l) s
where each, is a function of sending rates, according to (4). = max Z 9(s1,A) + Z CjAj
Constraint (13) makes proble@ non-convex. This con- tel jec
straint arises because in this formulation there is no loage = Z max g(si, A) + Z CjAj
assumption that all links have an infinite backlog of packets ler jec
as interferenc_e at an earlier hop causes the_ next hop to have = Zg(gl()\)’ A) + Z A,
less data available to send. In order to achieve feasibée rat el jec

allocations for flows, we require that a flow is transmitted

at the same rate as it is received at each hop, otherwide

congestion or starvation would occur along its path. D : min Z(\) (18)
Because this problem is non-convex, a distributed solution

may not be as straightforward or efficient. We note, howevesubiect to:

that problemQ could be approximated by relaxing the A= 0. (19)

condition in (13) and including all hops in the objective \ye yse the gradient projection method to iteratively obtain

function, with carefully assigned weights on each utiibys  the optimal for the problem. From Danskin's theorem [18],
casting the problem in a form similar #®. This could be a e know that

topic of further research, but we do not pursue it here.

C. Distributed Algorithm g—/\Z] = % I'(s) +Z)\i Ci — Z S

We derive a distributed algorithm to solve probld®h ' ieC leL() 5=
based on the methods presented in [6]. This problem meets cj — Z 5. (20)
Slater's condition [17], giving us strong duality. We seek 1eL(5)
to solve the problem in a distributed fashion by findlan
the solution to the dual using Lagrangian relaxation. Th
Lagrangian of problen®’ is

and the dual problem is

sing a step size in the negative direction of the gradient
Slves the algorithm

Aj(k+1) = max [ 0,A;(k) —y(c; — sik)) |, (21)
L(s,N) = f8)+Y Nle— > s i 18 = les g@ (
jec leL(j) H
L _ N where
= fl(s)— Z Z Ajst+ ZC;AJ s51(k) = s(A\(K)).
JEC leL(j) jec
= fs) - Zsl Z N+ ch/\j Each link in a maximal clique can share with each other

their current values of;, which is only local information,

leL  jec(l jeC
s ! and then compute the next.
= D gl N+ ) e, The convergence of the algorithm is well established in the
leL jeC literature, even when it is asynchronous. Onceonverges

where \; are Lagrange multipliers for constraints (5) and to the optimal solutionA*, of the dual problem, the optimal

solution, s*, to the primal problem is given by
g(si,A) =1lns + Z In (1 —ays;) — s Z Aj. (15) .
i€ F (1) jec() s =5(\").



V. NUMERICAL RESULTS

We seek to determine in what situations the partial inter-
ference model outperforms binary interference models, and_~ ...
by how much. We use MATLAB to numerically compute so- o
lutions to the rate optimization problem for several diéfer e
wireless networks. We use network topologies that reptesen
basic situations — these can be thought of as building blocks
out of which |arger topologies can be formed. () I_ Iinks_ interfering with a (b) N conter]ders in a clique

We introduce three binary interference models that we ~ S"9'€ fink- with one interferer.
compare with the partial interference (Pl) model. The
interference-as-contention (IC) model replaces any fieter
ence mappings with contention, no matter how small the
interference factor. The interference-ignored (lI) model Results
simply ignores any interference mappings and models onE/' ] . )
contention. The adaptive contention (AC) model follows Ve consider three generic network topologies and plot
the IC model or the Il model, depending on which modef? for each topology and for each contention model being
has higher performance. Thus the AC model gives bina mpared with the PI model. Each _topology is rep_resented in
contention the benefit of the doubt — it ignores interferencé'® figures as a combined contention graph and interference
when this provides good performance and models it d8@P; according to the Pl model. Clique capacities in each

Fig. 4. Topologies used for numerical results.

contention otherwise. topology are allc = 0.85.
] In all cases, the IC model never does as well as the PI
A. Performance metric model because modeling interference as contention is too

To compare these different models, we define a perfoconservative. For low values of interference, it is better t
mance metric that is based on the objective function of the Rit links send at faster rates and suffer some packet loss. At
model, using receiving rates. We justify this by recogrgzin high values of interference, it is better to have the intede
that receiving rates are what ultimately matters for usérs ¢ink send at a faster rate than the interferer, to providésbet
the network. Data that is sent but is lost due to interferénce performance and fairness. However, modeling interferasce
not considered useful. Thus the comparison should be madentention is often better than ignoring it when interfe®n
between the performance observed with Pl-derived reagiviris high. Thus in most cases, the combined AC model follows
ratesr* and the receiving rates actually obtained by the the Il model for low values of interference and follows the
other model from its sending rates, according to the Pl IC model for high values of interference.

constraint on receiving rates. Fig. 4(a) shows the first topology, whefdinks interfere
For ease of interpretation, we consider the ralioof  with a single link with a common interference factorbut do
performances?, that is, not interfere with each other. Fig. 5(a), 5(b), and 5(c) gtot
R=P(r*)/P(+). (22) for this topology for the Pl model against the IC, II, and AC

_ 7 models, respectively. The dotted curves show whigbegins
Thus, the comparison will simply read that the Pl modeio be greater than one. Interestingly, the Pl model and the I

outperforms the other modét times. model perform exactly the same for valuesaobelow 0.59.
The PI model uses proportional fairness, so that its objeGhis is because, for low values of the cost of interference
tive function is is offset by the gain of the interferer sending at full capaci
fr)y=>"Inn. (23)  Thus, both the PI model and the Il model calculate sending
leL rates at full capacity for each link. For larger values:and

However, scores obtained frofitr) range from—oo to zero, I, the Pl model outperforms the binary interference models
making it non-intuitive to ascertain how significant a bettemore than 1.5 times.
score might be in comparison to a worse score. We introduceFig. 4(b) shows the second topology, where a single link
the performance function has interference factar on N links that contend in a single

Plr) = S (M/IL] (24) clique. Fig. 6(a), _6(b), and 6(c) plat for this topology fqr

’ the Pl model against the IC, I, and AC models, respectively.

where|L| is the number of links in the network. Note thatThe dotted curves show where begins to be greater than
if f(r*) > f(r'), then clearlyP(r*) > P(r'), maintaining one. The Pl model starts performing better than the Il model
the ordering of feasible rate vectarsbased on the objective at much lower values of when N is large. This is due to
function scores. Furthermore, note tlaturns out to be the the fact that the contending links already have small rages a
geometric mean of receiving rates, which ranges betweenconsequence of sharing the medium. Utilities are lowered
zero and one, and is normalized with respect to the size of thheuch more by interference when sending rates are small.
network. Therefore, we study the rat® of performances, Thus, even for low values ofi, the Pl model does not
as denoted in (24), between the Pl model and other modedalculate sending rates at full capacity. However, for bBigh
for various network topologies. values ofa and N, the Pl model outperforms the IC model



(a) Ratio R of performance between the PI  (b) Ratio R of performance between the (c) Ratio R of performance between the

model and the IC model. Pl model and the Il model. The dot- Pl model and the AC model. The dot-
ted curve marks wheré? begins to be ted curve marks wheré? begins to be
greater than one. greater than one.

Fig. 5. Numerical results fof interferers on one link.

(a) Ratio R of performance between the Pl  (b) Ratio R of performance between the (c) Ratio R of performance between the

model and the IC model. Pl model and the Il model. The dot- Pl model and the AC model. The dot-
ted curve marks wheré? begins to be ted curve marks wheré? begins to be
greater than one. greater than one.

Fig. 6. Numerical results foiV contenders with one interferer.

only about 1.1 times. rate of link 0 isrg = so(1 — a(s1 + s2)), since links 1

To demonstrate the worth of the PI model, we consider and 2 cannot send at the same time. Our model predicts
topology combining features of the first two, whefrdinks o = so(1 — as1)(1 — as2), SO some accuracy is sacrificed
have a fixed interference factar = 0.4 on N links that in that regard.
contend in a single clique. Fig. 7(a), 7(b), and 7(c) pibt Our model is also limited by our restriction to objective
for this topology for the PI model against the IC, Il, andfunctions that provide proportional fairness. We make this
AC models, respectively. Experimental results show that restriction in order to guarantee convexity in the optirticza
is typical for interference factors to range anywhere betwe problem.
zero and one in a real network, with usually at least one
interferer on a link having a factor of at least= 0.8, so .
choosingz = 0.4 in this topology is a somewhat conservative W& have presented a partial interference model for op-
comparison [12]. The combined effect of several interferefiMa! rate control in multi-hop wireless networks. This new
and several contenders causes the Pl model to perfompdeldlrectly incorporates partial interference as aivéog

significantly better than the binary interference models. constraint, so that it is modeled separately from contentio
This leads to a convex rate control problem when formulated

VI. LIMITATIONS with link rates, but a non-convex problem when formulated
We model partial interference according to a well-knowmwith flow rates. Using standard techniques, we derive a
measurement study [12], and this model might generatistributed rate control algorithm for the link formulatio
inaccurate interference degradation in some scenarias. Rdumerical results on typical network topologies show that i
example, if links 1 and 2 share the same sending node, aisdnever correct to model partial interference as contentio
both have interference factaron link 0, the actual receiving In some cases, when partial interference is low, it can be

VII. CONCLUSIONS



(a) Ratio R of performance between the PI
model and the IC model.

Fig. 7.

(b) Ratio R of performance between the PI
model and the Il model.

(c) Ratio R of performance between the PI
model and the AC model.

Numerical results fof interferers andV contenders, withu = 0.4.

safely ignored. However, as the number of contenders ammb] L. Chen, S. Low, and J. Doyle, “Joint congestion contad media
the number of interferers grows, it becomes increasingly

important to model partial interference accurately, even f

small levels of interference.
The partial interference model can be used as the baid!
for a number of interesting wireless network problems.
Joint routing and rate control, link-layer scheduling, whel
assignment for multiple radio networks, and transmission
power control problems can all benefit from an accuratgs
model of relationships among links. In addition, the rate
control problem we have presented here needs additional

work. We plan to design an efficient implementation and tg, 4

[12]

verify numeric performance gains on a wireless mesh testbed
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