
Using N-Trees for Scalable Event Ordering
in Peer-to-Peer Games∗

Chris GauthierDickey
†

and Virginia Lo
Department of Computer Science

University of Oregon
1202 University of Oregon
Eugene, OR 97403-1202

{chrisg | lo}@cs.uoregon.edu

Daniel Zappala
Computer Science Department

Brigham Young University
Provo, UT 84602-6576
zappala@cs.byu.edu

ABSTRACT
We are concerned with the fundamental problem of event order-
ing in multiplayer peer-to-peer games. Event ordering, even with-
out faults, requires all-to-all message passing with at least two
rounds of communication [12]. Multiplayer games add real-time
constraints to this scenario. To meet this challenge, we develop
an event scoping mechanism that uses N-Trees for event propa-
gation. Unlike traditional application-layer multicast, N-Trees or-
ganize peers by their application-level scope of interest, instead
of by their delay-based shortest-path tree. This organization al-
lows peers which are close by in the virtual world to order events
without needing to communicate with other peers that are farther
away. We show the asymptotic analysis of N-Trees indicates that
they will perform well for scalable peer-to-peer event ordering.
We also provide an analysis of N-Trees in comparison to other
distributed architectures for peer-to-peer games.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—Distributed Systems

General Terms
Algorithms, Design, Theory

Keywords
n-tree, peer-to-peer, multiplayer, games, event ordering

1. INTRODUCTION
Event ordering is a fundamental problem in multiplayer peer-

to-peer games. Without event ordering, players will quickly gen-
erate inconsistent views of the virtual world as events are delayed

∗This work sponsored in part by NSF ANI 9977524.
†Supported by an NSF Graduate Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’05, June 13–14, 2005, Stevenson, Washington, USA.
Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

over the network. Traditional event ordering protocols, such as
the Paxos algorithm which only tolerates stopping failures [15],
can require up to five rounds of communication. In fact, even
without faults, distributed event ordering requires at least Ω(n2)
messages per event, and two rounds of communication between
all peers [12].

Multiplayer games present the additional challenge that events
must be ordered within a small time limit in order to maintain in-
teractivity. Though some games do not need low latency, such
as a game of online chess, the majority of multiplayer games on
the Internet have latency requirements below 500ms [20]. Tak-
ing the latency requirements of games in conjunction with the best
case scenario for distributed event ordering means that the naı̈ve
approach of all-to-all communication for event ordering will not
scale with the number of peers in the game.

Previous work in this area has looked at some form of applica-
tion layer multicast (ALM), such as the publish/subscribe system
of Mercury [3] or using multicast with regions [13]. These sys-
tems organize their dissemination paths based on the proximity of
peers on the network, instead of the proximity of peers in the vir-
tual world. The result is that peers which are close in the virtual
world but far apart in the network will have to route messages over
the underlying ALM structure to order events. Even though these
systems guarantee O(lg n) application layer hops with n peers,
even a few additional hops can add considerable delay, making
interactive event ordering infeasible.

To address this problem, we propose using N-Trees and scoped
events. N-Trees are a generalization of the octree, from computer
graphics [8], that recursively subdivide an N-dimensional space.
For event ordering, the N-Tree subdivides the application state
space, which is the application domain that all peers share and
modify. In a peer-to-peer game, the application state space is the
virtual world; hence N-Trees can be applied naturally to this state
space.

Peers are organized into an N-Tree by their scope of interest in
the virtual world. The N-Tree allows peers to efficiently move to
new locations, discover other peers that are in close proximity, and
propagate events to other parts of the virtual world. By joining the
N-Tree, peers know which peers are close by, and can therefore
order events directly with those peers without having to exchange
events with other, further peers.

Peers generate scoped events, which are events that are labelled
with a tuple representing the scope of impact that the event has in
the virtual world. When a peer generates an event, it uses the N-
Tree to propagate the event to other peers within the event’s scope.
If the scope of the event is contained within the leaf node, then

87

the peer only has to exchange events directly with the other peers
in the leaf. Using scoped events, we loosen the requirements that
all peers must exchange message to totally order events. In other
words, scoped events and the N-Tree allow us to reduce commu-
nication between peers while quickly propagating events that need
to reach far away peers.

This paper has three important contributions. First, we have
created a novel event ordering system that organizes peers by their
interest in the application domain (unlike traditional ALM), al-
lowing peers to order events quickly. We describe operations for
joining and leaving the N-Tree. Second, we provide an asymptotic
analysis of the complexity of joining, leaving, moving between
nodes, subdividing nodes, and collapsing nodes. We also compare
it to existing simulations. Last, we demonstrate how N-Trees and
event scoping can be used for scalable peer-to-peer games.

2. MOTIVATION AND BACKGROUND
We are motivated by the fact that neither strong or weak event

ordering are scalable when the number of nodes and non-local
events increase beyond a small value. In strong event ordering,
all events in the system are totally ordered [14]. In weak event or-
dering, only non-local events are totally ordered [7]. For example,
in a peer-to-peer game, with strong event ordering, a command to
’look at player inventory’ would be ordered with every other com-
mand by every player in the game. This stringent event ordering
is useful for debugging situations to know exactly when one event
occurred. In a game with weak event ordering, only events that
change the virtual world are totally ordered. Thus, the inventory
command would not be ordered (and only executed locally), while
a movement command would be ordered.

Unfortunately, even in the best cast scenario, any event ordering
algorithm requires at least Ω(n2) messages and at least 2 rounds of
communication before consensus can be reached [12]. The Paxos
algorithm [15], for example, requires up to five rounds of commu-
nication to agree on a value, and a majority of nodes must have
reliable communication with the leader.

We are interested in N-Trees because they are optimized for
event propagation so that the fewest number of nodes are con-
tacted for event ordering. Existing peer-to-peer structures, such
as Gnutella, Chord, CAN and Pastry [10,17,19,21], are optimized
for fast storage and retrieval of data using two functions, insert(key,
value) and lookup(key). DHTs do provide the kind of mapping
we need for the application space – we might map the application
space to the key space of a DHT, for example. However, propagat-
ing events to neighbors and relocating to new places in the DHT
would be too slow for scalable event ordering.

N-Trees have a similar advantage when compared to using ap-
plication layer multicast (ALM) such as Bayeux, CAN-multicast,
Narada, NICE, and Scribe [1, 4, 6, 18, 23]. Multicast is optimized
to send as few messages as possible in one-to-many (or many-to-
many) communication. However, multicast trees are built based
on end-to-end delays between hosts, not on the interests of group
members. While multicast reduces messaging, all messages are
sent to all group members and filtering messages to relevant mem-
bers is not a trivial task. Further, in a peer-to-peer game, every
member sends messages, requiring a shared tree (such as HMTP
[22]), or n source-specific trees. On the other hand, ALM could
be used in conjunction with N-Trees between leaders of each node
in the tree, and even between nodes in each small group, to reduce
messaging.

Mercury provides a publish/subscribe architecture to support

massively multiplayer online games (MMOs) [3]. In this archi-
tecture, a multi-attribute query language is used so that game state
is published in Mercury and players receive a small subset of state
changes according to their subscriptions; thus, the total state that
each player receives is reduced by Mercury. The primary differ-
ence is that Mercury uses a DHT to store and route information
while N-Trees build a domain-specific tree. Joining an N-Tree at a
particular node determines what data a peer receives, whereas with
Mercury the subscription determines what data is routed to a peer.

Knutsson et al. statically divide a world into regions and use
Scribe to multicast messages to all members of a region [13]. Peers
join the multicast tree of the region they are interested in, but this
also means that peers will have to forward unrelated traffic. This
occurs because peers are members of the underlying Pastry DHT
and will likely be on the path of other multicast trees (since a
source-specific tree is built for each region). Further, the static
division of the virtual world limits the scalability of the system if
some areas suddenly become popular. N-Trees in this case could
be used in each region to increase the scalability of their work.

3. DEFINITIONS

3.1 Peer-to-Peer Game
The term peer-to-peer game is defined as a multiplayer, net-

worked game (running over the Internet) where each player, or
peer, shares an equal responsibility in running the game. We are
interested in large scale peer-to-peer games, since games with few
players can simply run traditional event-ordering protocols, where
large scale might mean several thousand players. Note that using
a “back of the envelope” calculation, a peer-to-peer game of only
64 players would overwhelm a typical broadband connection.1

Throughout this paper and without a loss of generality, we as-
sume a simple game that takes place on a 2-dimensional plane,
where each peer represents a single player in the game, each of
whom roams the virtual world in search of treasure. Players have
the ability to cast a single spell, which creates a snow storm, to help
escape the population of monsters (undoubtedly evil) that want to
eat the players. This simple model represents the basic interac-
tions of any multiplayer game. Players can interact with objects
(taking a treasure) or each other (giving each other treasure), and
objects can interact with players (monsters attacking players) or
with each other (snow storm snowing over the monsters). Last,
the snow storm represents an event that affects a portion of the vir-
tual world, instead of just a single point such as taking a treasure
would.

3.2 Application State Space
The application state space is defined as the domain of a dis-

tributed application that is hierarchically structured such that a do-
main has 2N sub-domains, each sub-domain shares this domain
as a sole parent, and each sub-domain can be recursively subdi-
vided ad infinitum. We place the restriction that each division of a
sub-domain has 2N children solely for the purpose of mapping the
application state space onto an N-Tree.

In a peer-to-peer game, the application state space is typically
the virtual world and its contents, including the players of the
game. Events occurring in the virtual world include player move-
ment, taking an item in the virtual world, and larger events such
1Assuming 10 updates/second, 100 byte updates [5], unicast com-
munication between players, each player would require 500Kbps
upload and download speeds.

88

.5

1

0
0

.25

snow_storm(.48, .28, .05)

1

Figure 1: Cartesian application space and quadtree represen-
tation. In this example, a snow storm occurs at (.48, .28) with
a radius of .05. The event occurs in the shown node and may
be propagated to other nodes if the radius of the event exceeds
the boundary of the node it occurs in.

as a snow storm in an area. The state space in this example in-
cludes two or three dimensions, or variables, which correspond to
the actual dimensions in the virtual world.

3.3 Scoped Event
A scoped event is a tuple consisting of an action, the location of

the action, and a function representing the scope of impact of that
action in the application state space. The location of the event in-
dicates where the event originally occurs while the scope indicates
how broadly the event can impact the application state space.

For example, taking a treasure in a game creates an event that
occupies a single point in space, which is the location of the trea-
sure. A snow storm, on the other hand, would have a scope equal
to the maximum radius of the storm. In this case, the scope is
a circle centered at the location of the action, with a given radius.
However, we do not limit scopes by circles, and instead use a func-
tion which defines the scope for a given event.

3.4 N-Tree
We define an N-Tree as a generalization of the octree with N

dimensions instead of only three that an octree has, or two that a
quadtree has [8].

An N-Tree is defined inductively as follows:

• Base case: a Leaf

• Inductive case: a Node with 2N children, each an N-Tree

By this definition, nodes in the N-Tree are either parent nodes
(simply called nodes), or leaves (a node with no children). An
elected subset of peers manages the nodes and leaves of the N-Tree
on a one-to-one basis. All peers reside at leaves and totally order
events with other peers in the same leaf. We call the peers at a leaf
a group. Events that have a scope that intersects the boundary of a
leaf are propagated to other leaves in the N-Tree by being passed
up through leaders until a higher level node is found that encom-
passes the entire scope of the event–at which point it is propagated
back down the tree to appropriate nodes and leaves.

The purpose of the N-Tree is to divide the application state space
into a series of nested game scopes so that peers can be organized
by their interest in the game. This has the result of reducing the
communication requirements between peers because peers that are
far apart in the virtual world do not have to exchange events with

each other. Each successive level below the root node represents a
further subdivision of the virtual world by 2N .

Peers, like events, have a location, and a function that deter-
mines their scope of interest in the virtual world. All peers reside
at leaves in the N-Tree. The peer’s scope of interest determines if
it should be a member of more than one leaf, for example when it
is on the boundary of two leaves. In this case, it would join both
leaves in the N-Tree.

In Figure 1, we illustrate a 2-tree, or quadtree. In a quadtree, the
state space is a Cartesian square that is subdivided as necessary to
meet the scoping requirements of the application and the current
peers in the network. For our model game, the 2 dimensional vir-
tual world corresponds to a 2-tree so that each point in the world
maps to a leaf in the 2-tree.

For example, a player is going to cast a snow storm centered at
(.48, .28). She joins the N-Tree leaf that encompasses (.48, .28)
(see Figure 1). She would then become a member of the group in
that leaf so that she could totally order the casting of the spell with
other events by the group members.

Because the main purpose of the N-Tree is to reduce communi-
cation and propagate events, leaves in the N-Tree are subdivided
whenever the population of a leaf exceeds a given threshold t. This
threshold is game specific and depends on the communication and
latency requirements of game. For example, a first-person shooter
type game, which has a high update rate and low latency require-
ments, might have a lower threshold t to make sure that players
are interacting with as few other players as possible to keep from
overwhelming their Internet connections. Thus, when the leader
of a leaf discovers that the population of the node has exceeded
the threshold, the leaf is subdivided into N children and the peers
are placed into the appropriate leaves.

4. EVENT ORDERING
Using the N-Tree, we can assume that peers are organized ac-

cording to their scope of interest in the virtual world. At the leaf
level, all peers run a total event ordering protocol such as NEO
or Lockstep [2, 9]. These protocols ensure that events are ordered
without cheating. For example, two players might be competing to
take a treasure from the game. NEO or Lockstep would resolve the
situation so that only one of them could actually get the treasure.

At times when the scope of an event exceeds the boundary of the
leaf that it was generated in, the N-Tree is used for event propaga-
tion (discussed further in Section 5). For example, in Figure 1, the
snow storm event has a radius of .05, which intersects the boundary
of the current leaf. This event would be totally ordered in the leaf
at which it occurs in, and then propagated to neighboring leaves
through the N-Tree. The problem then arises that events from two
different leaves may preclude each other but one may be delayed
on the network, so how can we order events in this situation?

Normally, if we used an event ordering protocol between all
players, each event would have to have been accepted by all play-
ers before it actually occurred. Events with a large scope would
then take a long time before they were accepted, as every player
within that scope would have to be contacted so that the event
could be totally ordered with their other events. In essence, we
have a trade-off in the interactiveness of event ordering with the
ability to totally order events.

In a peer-to-peer game, interactiveness has to be chosen, or else
we loose the main purpose of the game: to interact with the virtual
world and other players! Fortunately, games are forgiving in this
respect because we can turn back time in the game to allow events

89

that arrive late to occur and possibly preclude events that have al-
ready occurred, as with Jefferson’s Time Warp algorithm [11]. In
fact, modern day games already do just what has been described.
When an event arrives late that precludes a previous event, the
game time is rolled back to when the event should have occurred,
and all later events are then replayed up to the current time. While
this solution is not perfect, the alternative is intolerable latencies.

The NEO protocol synchronizes peers and uses time stamps for
event ordering [9]. Events generated locally in a leaf are totally
ordered and can be further ordered with other events in the game
if their scope exceeds the boundary of the leaf . The Lockstep pro-
tocol would require the simple modification of adding timestamps
to each round so that when the event was propagated through the
N-Tree other peers could determine the ordering.

5. THE N-TREE PROTOCOL
In this section, we describe how we build and maintain an N-

Tree while handling joins and leaves. We use a DHT as a bootstrap
mechanism to discover nodes in the N-Tree. Nodes use the DHT to
register their IP addresses with locations in the application space.
When a new node wishes to join the system, they do a lookup on
their location in the application space, which returns a list of nodes
in that area.

The advantage of the DHT is that if some node in the DHT has
failed and entries are missing, the next responsible node in the
DHT will respond with the entries it has. Thus, as long as a single
node in the N-Tree can be discovered on the DHT, new peers can
join the system.

5.1 Joining the N-Tree
To join, a peer queries the DHT for some set of nodes in her

location of the application space. She then sends a join message
to one of the nodes that includes the peer’s current scope in the
application space. The receiving node looks at the scope of the
join and determines whether to forward the message up or down
the tree. Eventually, the join message reaches a node that is within
the peer’s event scope, and this node notifies the peer so that it can
join the N-Tree at this location.

Each node further has the ability to divide its scope based on the
communication needs of the application. The reason that subdivi-
sion is application specific is that some applications have a much
higher event rate than others. Applications with a high event rate
will probably need to subdivide the state space as much as possible
so that the t-way communication between the t peers in a node is
reduced as much as possible without hurting the performance (or
security) of the application.

When a leaf node discovers that it contains more than a given
threshold t for the application, it sends a divide message to the
peers. The application space that this leaf represents is then sub-
divided evenly along each of the N dimensions. Each peer within
the newly divided subspace then determines who will act as the
leader (using any appropriate leader election protocol [16]), and
the leaders notify their parent of their leadership status. These
leaders represent the new leaves of the previous leaf that was sub-
divided. In this manner, the tree can be subdivided as necessary.

5.2 Leaving the N-Tree
To leave the N-Tree gracefully, a peer sends a leave message

to all other peers in its node (or group), with a new leader being
elected and the parent node notified if the leaving peer is the node’s
current leader. For an ungraceful leave, either a parent or a group

will notice that a peer is missing when they try to forward an event
to it. The case where the peer is not a leader is trivial. However,
when the peer is a leader, the protocol must handle rejoining the
group to the tree. If the group noticed that the leader is missing
before the parent did, then they can simply re-elect a new leader
and notify their parent.

On the other hand, if the tree is attempting to forward an event
to a subtree, then it may discover that a child is not responding
to an event. To handle this case, leaders should periodically send
membership lists to their parent so that the parent can quickly send
the event to another group member. Furthermore, the parent can
queue events until the subtree is reconnected. However, even if
the membership list of the parent is outdated, the parent can locate
members of the subtree through the DHT.

If a peer leaves that is both a leader of a group and of one or
more parent nodes, then the group will first elect a new leader and
then the leader will contact other leaders to elect higher level node
leaders. The DHT allows peers to discover other leaders if they do
not already know of them.

When peers leave, the leader of the node determines if the sub-
tree can be collapsed. Subtrees are collapsed whenever the total
number of peers in the subtree is less than or equal to t/2 in or-
der to keep the paths in the tree short and to prevent unnecessary
subdivision and collapsing of branches in the tree.

5.3 Event Propagation
Event propagation occurs when the scope of an event exceeds

the sub-domain of a node in the N-Tree. When a peer generates an
event, the event is exchanged with other peers in the same node.
When the leader receives the event, she checks the scope and com-
pares it to the scope under her responsibility. If the scope of the
event is not completely contained by her node, she forwards the
event to her parent. The parent then forwards the event to all chil-
dren whose scope intersects with the event scope, and additionally
forwards it up the tree again.

5.4 Failures
Last, we consider the issue of failures. In an interactive game,

the players will get frustrated if they have to wait for several sec-
onds each time a leader is lost. One may ask whether we can en-
sure that leader loss does not cause the simulation to pause while
a new leader is elected. In particular, as the game grows in popu-
lation, the probability that a leader will be lost also increases.

For this case, we note that each N-Tree node keeps a member-
ship list of the group members of its child nodes. If we assume the
majority of events are local, then a lost leader will be detected with
a high probability (and repaired) before the simulation is affected.
However, to maintain interactiveness, each leaf group could elect
two or more leaders. Events would then be forwarded through the
additional leaders, with new leaders elected whenever one leaves.

6. ANALYSIS OF N-TREES

6.1 Asymptotic Analysis
In order to understand N-Trees as a communication structure for

scoped events, we provide a simple analysis of their performance
in terms of messaging. In general, all operations take at most loga-
rithmic time in terms of the number of peers, while some only take
constant time. Table 1 summarizes these results. In the following
discussion, n is the number of nodes in the N-Tree, p is the num-
ber of peers, t is the threshold for subdividing a node, and d is the

90

Table 1: Asymptotic Messaging Costs
Player distribution

Operation Pathological Uniform
New Member Join O(lg p) + O(h) O(lg p)
Move to new node O(h) O(logd n)

Amortized movement O(1) O(1)
Leave O(1) O(1)

Collapsing branch O(1) O(1)
Subdividing leaf O(1) O(1)

Event propagation O(h) O(logd n)

p is number of peers, h is height, n number of nodes, d = 2N (or the
number of leaves per branch) in the N-Tree.

number of leaves per branch (i.e., d = 2N in the N-tree), and h
refers to the height of the tree.

As with binary trees, many operations on the N-Tree are based
on its height, h. N-Trees do not try to balance themselves to main-
tain their height to be logarithmic to the number of nodes in the
tree. Thus, in a worse case scenario, the height of the tree could
be O(p/t). However, this scenario only represents the case when
all players are in the same location in the virtual world (a case we
assume to be extremely rare or non-existent as p gets sufficiently
large).

Unfortunately, no scientific measurements have been done that
show the distribution of players in a game. Anecdotally, game de-
signers want a uniform distribution of players in the virtual world
to keep the level of inter-player messaging low (so that the game
can scale to a large number of players). Given a uniform distri-
bution, the N-Tree is balanced and h = O(logd n). Note that the
height of the N-Tree is based on the number of nodes in the tree,
not the number of peers in the game. Assuming a uniform distribu-
tion, n = O(p/t) since each leaf is subdivided when the number
of peers in it exceeds the threshold value t.

Joining is a O(lg p) + O(h) operation. The O(lg p) timing
comes from the search time for most DHTs (assuming all peers
are registered in the DHT). Once a node is found for the N-tree, a
peer will most likely be able to join the N-Tree in constant time.
However, if the DHT is not up to date, it can take up to O(h) time
to locate an appropriate node through the N-Tree.

Once the N-Tree is joined for the first time, moving in the N-
Tree is a much faster operation. The majority of player movement
will be slow (in comparison to warping from one part of the world
to another where a fresh join from the previous paragraph would be
used), so a player simply leaves their node and joins a neighboring
node, requiring only at most O(h) time (in the case where we join
the node that is the neighbor of a completely separate branch of
the tree). We can show that a player moving from one end of the
world to another has an amortized movement cost of O(1), though
we omit the proof due to space constraints.

Leaving, on the other hand, is a simple O(t) operation, where
t is the maximum number of members in a leaf (the application
threshold before subdivision). When a node leaves, it must contact
the other t − 1 members to notify them that it is leaving.

To analyze the complexity of subdivision, we simply examine
leader election protocols. A constant number of messages are re-
quired to initiate subdivision. However, leader election using stan-
dard protocols can take from O(1) to O(t2) messages, where t is
the maximum number of peers in a leaf [16].

Subdivision has another cost in the amount of state that must be
stored at each node. For N-dimensions, each node must store 2N

pointers to children. Applications designers should be motivated
to reduce the application state space when possible to avoid a state
explosion. We believe that most applications will not have a large
number of dimensions in the application state space. In particu-
lar, we think that games can use 2 or 3 dimensions sufficiently to
subdivide the application state space.

N-Tree collapsing is a O(1) operation. We assume in this case
that O(2N) = O(1) because the N value is a constant value set by
the designers of the application. For peer-to-peer games, N would
probably be 2 or 3, meaning 4 or 8 messages at most for collapsing
a branch. Each node is periodically sending membership lists to
its parent. When the parent notices that the number of peers in its
subtree is less than or equal to t, the parent sends out a message to
the peers and collapses the tree. To prevent repeated subdivision
and collapsing, the minimum and maximum threshold for a leaf
should be different.

Event propagation is a O(h) operation, where h is the maximum
height in the tree. In the worse case, a group at the lowest level
in the tree generates a global event which must travel to the root
of the tree and back to every other group in the application. As
with joining, the worse case scenario is h = O(p/t), which again
represents a case where most players are in a single location in the
game. With a uniform distribution, h = O(logd n). However,
even if most players are located in a single location, we believe
that the majority of events will be local to that area, so that most
events will not need to traverse the entire N-Tree. In most cases,
events will travel through only a few levels of the tree, keeping the
cost of event propagation low.

6.2 Performance Analysis
In addition to looking at the asymptotic performance of N-Trees,

we wish to see how the performance of N-Trees affects the la-
tency players would experience if N-Trees were used to propagate
events, especially in comparison with similar architectures. In the
architecture by Knutsson et al. experiments were run using their
simulator with 1000 and 4000 players over a virtual world divided
into 100 and 400 regions, with players uniformly distributed over
the world [13]. Players were connected over a randomly gener-
ated topology with latencies between 3 to 100ms. For Mercury,
the authors only simulated 20 and 40 players in each simulation,
but uniformly distributed players and assumed a random way-point
model of movement for players [3]. In the Mercury simulations,
they assumed players were connected with a star topology, each
with a 20ms delay between each other and the simulation field
was about 2n times the maximum distance a player could move,
for n players. Neither work considered events that were not local
to the players or a particular object.

To analyze the performance of N-Trees in a similar setting, we
assume a uniform distribution of players, only local events, and a
20ms delay between players, as with the Mercury simulations. We
then extrapolate the data from [13] and [3] to get an idea of how
these three architectures compare for the dissemination of mes-
sages.

Using this data, we plot our hypothesized performance based
on N-Trees and using the simulation parameters common to Mer-
cury and Multicast regions using Scribe. Please note that the graph
is purely speculative, but demonstrates the effectiveness of orga-
nizing players by their application-level interest instead of by the
shortest-path multicast tree. Figure 2 shows our hypothesis graph-
ically.

91

 0

 20

 40

 60

 80

 100

 120

 140

 10 100 1000 10000

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Number of Players

Mercury
MCast regions

N-Trees

Figure 2: Theoretical performance of three different architec-
tures. For Mercury, the first two data points at 20 and 40 play-
ers are taken from [3], with the rest of the points derived from
their measured number of hops in the Mercury DHT. For Mul-
ticast regions, points 1000 and 4000 are taken from their simu-
lations in [13], with the rest of the points extrapolated from
their data and Scribe performance. N-Tree performance is
hypothesized based on the simulation parameters of previous
work in [3, 13]

We believe our hypothesis will hold for the simulation param-
eters used in [3, 13]. Our reasoning is if players are uniformly
distributed, N-Trees perform optimally. The movement models
used in simulations by Bharambe et al. and Knutsson et al. en-
sure that the population will stay uniformly distributed. Thus, the
N-Tree will be perfectly balanced and subdivided so that players
close together exchange events directly with each other. With a
20ms delay between all players, this results in an average 20ms
delay, regardless of the population of the game.

Clearly, a more complicated and detailed set of experiments
are needed to validate N-Trees. Indeed, the true test for N-Trees,
Mercury, and Multicast regions, occurs when players have a non-
uniform distribution and events have scopes that occupy more than
a single point in space. Knutsson et al. suggest dynamic region
adjustment for these situations, but do not describe how to accom-
plish this. Mercury, on the other hand, with its query language
should be able to handle crowded situations more gracefully.

7. CONCLUSION AND FUTURE WORK
N-Trees and scoped events offer a scalable alternative to event

ordering in peer-to-peer games. While not all peer-to-peer applica-
tions have events which can be scoped and require scalable event
ordering in terms of the number of peers, our work provides a
mechanism to make this class of applications scale.

Our hypothesis is that N-Trees and scoped events can help make
peer-to-peer games possible by providing an efficient communica-
tion architecture as evidenced by the asymptotic analysis of the
various operations on N-Trees. Our future work is to demonstrate
this through a more detailed set of simulations that includes a more
realistic model for player distribution, movements and event gen-
eration. These simulations should measure the cost of event prop-
agation when event scopes fall outside of the leaf they occur in,
delay when group leaders leave (or fail) and the cost of rebuild-
ing the N-Tree, the cost of event ordering in terms of messaging
and latency when players move throughout the virtual world, and
the cost of event ordering when players gather in local areas (to
test pathological cases). We plan to compare N-Trees further with

other architectures for peer-to-peer event ordering. Finally, we
hope to show that N-Trees can be generalized to other peer-to-peer
applications requiring scalable event ordering.

8. REFERENCES
[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable

application layer multicast. In ACM SIGCOMM, pages 205–217.
ACM Press, 2002.

[2] N. E. Baughman and B. N. Levine. Cheat-proof playout for
centralized and distributed online games. In IEEE Infocom, pages
104–113, 2001.

[3] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
scalable multi-attribute range queries. In ACM SIGCOMM, August
2004.

[4] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE:
A large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in Communications
(JSAC), 2002.

[5] W. chang Feng, F. Chang, W. chi Feng, and J. Walpole. Provisioning
on-line games: A traffic analysis of a busy counter-strike server. In
ACM Internet Measurement Workshop, 2002.

[6] Y. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.
In ACM SIGMETRICS, pages 1–12. ACM Press, 2000.

[7] M. Dubois, C. Scheurich, and F. A. Briggs. Synchronization,
coherence, and event ordering in multiprocessors. Computer,
21(2):9–21, 1988.

[8] J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics. Addison-Wesley, 1996.

[9] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr. Low latency and
cheat-proof event ordering for peer-to-peer games. In ACM
NOSSDAV, June 2004.

[10] Gnutella. http://www.gnutella.com.
[11] D. R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,

7(3):404–425, 1985.
[12] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus

when there are no faults—a tutorial. MIT-LCS-TR-821. Technical
Report MIT-LCS-TR-821, MIT, Massachusetts Institute of
Technology, Cambridge, MA, 02139, May 2001.

[13] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support
for massively multiplayer games. In IEEE Infocom, March 2004.

[14] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[15] L. Lamport. The part-time parliament. ACM Trans. on Comp. Syst.,
16(2):133–169, May 1998.

[16] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
Inc., 1996.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A
scalable content-addressable network. In ACM SIGCOMM, pages
161–172. ACM Press, 2001.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenkar.
Application-level multicast using content addressable networks. In
Network Group Communications, November 2001.

[19] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems
Platforms, pages 329–350. Springer-Verlag, 2001.

[20] J. Smed, T. Kaukoranta, and H. Hakonen. Aspects of networking in
multiplayer computer games. In NetGames, April 2002.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In ACM SIGCOMM, pages 149–160. ACM
Press, 2001.

[22] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for
delivering multicast to end users. In IEEE Infocom, June 2002.

[23] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.
Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In ACM NOSSDAV, June 2001.

92

