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Abstract—Achieving fair and optimal data rates in wireless of constraints is used to model the unique characteristics o
networks is an area of continued research. Distributed algithms  the wireless network, such as carrier sensing or intert&ren
have been developed directly from mathematical optimizatin .o ngiraints. The solution to this optimization problem wien
problems that guarantee fair and optimal rates. However, tle . L - .
algorithms developed thus far are based on simplified models yield a set of rates that maximize network U“"tY for thekin
of wireless networks. This research presents a first-pringles Of flows. These rates can then be used as input to a rate
model of wireless networks that reduces to the classical mets controller that sits on top of (or inside) the MAC protocol,
under certain limiting conditions. The model uses random s |imiting the packet transmission rate for each flow or link.
to represent the times during which a channel is perceived to When the optimization problem is convex, it can often be

be utilized. Although the resulting optimization problem is non- . L . .
convex, its solution can be derived offline to offer insightrito  tanslated into a distributed rate control algorithm, makit

situations where the classical models succeed or fail. We gride  Practical to d_eploy ina Wireles_,s network. _
the framework for a branch and bound solution to this offline Our focus is on the constraints used to model the wireless

problem. network, as this is the critical piece in the NUM approach. If
the model is inaccurate, then the optimization problem may
_ . not yield an accurate or optimal solution. We limit our study
Wireless networks are often used as a low-cost alternzmveta stationary, multi-hop wireless networks that use CSMA,

wired infrastructures, while also accommodating mobilerss g\,cy a5 the 802.11 MAC. This broadly characterizes the most
The most prevalent med|um. access control (MAC) prOtOCWidely-used wireless networks in the field, often referred t
used in wireless networks is defined in the IEEE 802. mesh networks.

standard. However, research has shown that when the v&relesThis paper develops a first-principles model of wireless

network is extended to multiple hops the 802.11 MAC ifeqyorks for the rate control problem. By first-principles,
plagued with serious fairness and efficiency problems, somge, 1ean that the most basic assumptions are made of how
times completely starving one data flow in favor of anoth%um_hop wireless networks with CSMA operate. In this
[1J. This is in part due to the fact that_ sharing resources inrﬁodel, perceived times that the medium is occupied are
wireless network is a fundamentally different problem than o esented as a random set. Our model may also be classified
a wired network and requires some theoretical understgndgg a measurement based model, as it takes as inputs the
to solve. .. . probabilities of links carrier sensing or interfering wigtach

As a result of these problems, rate allocation in wireleggner sych an approach is more realistic than physicar laye
networks to achieve maximum network ut|I|zat|op and fagse modeling, such as the various signal fading models with SINR
has become a popular area of research. Seminal researcl, jasholds, and has been used significantly to model wiseles
this area includes [2], [3] for wired networks, which hasbee,onvorks for various purposes [12], [13], [14], [15], [16],
easily extended to wireless networks in [4], [5], [6], [78l] 17 [9]. A combination of measurement based modeling
[9], [10]. See [11] for a survey on this and other active resea 5,y physical layer modeling is used in [14] to determine

topics for wireless networks. probabilities of carrier sensing and interference betwesirs

This research attempts to answer a fundamental questigpy,,ges. Kashyap, et al [16] extends this idea to also model
Given a wireless network topology and a set of active dajg,apilities of carrier sensing and interference of geop
flows between source nodes and destination nodes, Whgles in order to determine the capacity of a wireless link. W

allogatipn ,Of rates is optimal and faiqu thg networ.k utility pote specifically that their approach is very similar to Qurs
maximization (NUM) approach, an objective function for th"f‘nodeling the states (transmitting, deferring, idle) of al@o

network is defined, typically a sum of utility functions fa@&h < andom sets. However, they also model specific aspects

link's or flow's sending rate, where the form of the utility ¢ tho 802.11 MAC as opposed to generic CSMA, and their

function defines a particular notion of fairness. Next, a Sglyge| predicts an uncontrolled environment, where theneis
We gratefully acknowledge the generous support of AFRL F8g9-2- ate controller_other than t_h_e 802.11 MAC. In the future, we

0219. hope to combine the qualities of ours and Kashyap’s models
The authors are with th&Information and Decision Algorithms Labo- to achieve further accuracy for rate control problems.

ratories and the Internet Research Lab at the Computer Science Depart- In thi K h h der limiti diti

ment, Brigham Young University, Provo, UT 84602, USfdal eri p, n this work, we show that, under limiting conditions, our

sean. war ni ck, daniel.zappala} [at] gnail.com model reduces to previously proposed models in the litezatu
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S; Sending rate of linki. 1

T Receiving rate of link:. °—
d; Delivery ratio of link 4.

agj Receiving interference probability of link
interfering with link 4.

L Set of links.

L; Set of all links inL excepts.

C Set of maximal cliques.
C
L

(¢) | Set of maximal cliques containing link
(7) | Set of links in maximal clique.

TABLE |
NOTATION USED IN THE MAXIMAL CLIQUE MODEL AND THE PARTIAL
INTERFERENCE MODEL

Clique 1%

Specifically, with the assumption of binary, symmetric segs

our model reduces to the common maximal clique model used LA e wirel Cand i i ) o
. . . . . . 1g. 1. n example wireless network and its correspondingfexation grap
by seminal research in this area [4]’ [8] Likewise, with thé/ith the maximal cliques circled. Links 1, 2, and 3 contendéaese they share

assumption of no carrier sensing between interfering Jiokis  node B. Links 4 and 5 contend because sending nodes D and Fitaie w
model reduces to the partial interference model we preljiousarrier sensing range of each other. Assuming RTS/CTS iblethalinks 3

. d 4 contend because sending node D is within carrier gemainge of
deveIOped [101' We conclude by showmg that our mOd%Iceiving node C, which sends out CTS signals. This modetsnthat links

induces an optimization problem and scoring mechanism thak maximal clique have sending rates summing to at most one.
can be used to compare the performance of various rate con-

trollers, should our model indeed prove to be more accurate. | cij; I_Cakffief sensing probability of link being sensed by
In .thIS Case.’ SO|V!ng. the network u.tlllty m?'XImlzatlon P Si Effective sending rate of all other links as observed
using the first-principles model will provide an upper bound by link i.
on the performance of all rate control policies. R; Effective (receiving) interference rate at linkdue
to all other links.
IlI. CLASSICAL MODELS K; Set of links that contend with link.
In this section we review two classical models of wireless | 21\p2 | Set of elements ip; but not inps.
. P(p) Set of all subsets op except the empty set.

networks that have been used to solve the fair rate control =5,y Set of all subsets op with [p] = =.

problem: themaximal cliqgue modelwhich formulates con- TABLE I

straints on the sending rates, and tpartial interference ADDITIONAL NOTATION USED IN THE FIRST-PRINCIPLES MODEL
mode] which supplements the maximal cliqgue model by

formulating constraints on the receiving rates. Table kprds

the notation used in these models.

A. The Maximal Clique Model

The maximal clique model is the most widely used model The design of the classical models raises some questions.
for rate optimization in wireless networks [4], [8]. Figule How do we know that mutually contending links (maximal
shows how a contention graph is inferred from a wirelegdiques) implies that their rates must sum to at most 1?
network. This graph has a vertex representing each actike liHow can the maximal clique model be logically extended to
and each edge signifies that two linésntend or cannot send consider the case of partial carrier sensing, where theee is
at the same time. For each maximal cligiéts links’ sending continuous range of probabilities that nodes can sense each
ratess must sum to at most some clique capacity, which féither, and the notion of cliques is immediately destroyed?

IIl. THE FIRST-PRINCIPLESMODEL

our purposes will always be 1: Why, in the partial interference model, is the effect of each
, interfering link multiplicative? We seek to answer thesesiu
Z si<l, VjeC. @) tions by developing a model from a more theoretical stanupoi
i€L(j) by using random sets to represent observed times the medium

is occupied. The additional notation is given in Table II.
The following elementary assumptions are made:

B. The Partial Interference Model

The partial interference model supplements the maximal ) T i ] o ]
clique model with constraints on the receiving rates [10jfeT * Discretization of timeTime is divided into large blocks
model is based on an empirical study of carrier sensing and that are further divided into equally sized slots. During
interference in a wireless mesh network [17]. The constrain ~ €&ch time slot, each link is either sending or not sending.

on each receiving rate is . L_Jniform random selectiorl.:_or eac_h time bIo_cIT, (_aach
' link has a setF' C T of available time slots in which to
ri=dis; [[ (1 —aisy), Viel, (2) send, and a seX ¢ F when it does send. Eadhe F
JeL; has an equal probability of being iK.

where the delivery ratid; implies inherent loss over the link. « Negligible indirect schedulinglf link i senses linksj



and k sending duringX;, X;, C T, respectively, then But |X; NF| is found by multiplying|X;| by the probability
dependencies ok ; U X, on the sending times of anythat an element irF; is also inNEF:
link [ # i, 7, k are negligible. |NF|
When considering the effective rate of linksand k& as | X NF| = W|Xi|
perceived by linki, realistically there may be some other link '
I (or even a set of other links) that cause the rateg ahd SO that
k to overlap more or less than usual, which could in turn InX|=n(N)|nF ]
affect how much linki can send. The last assumption simply iEN
states that these effects are negligible. We recognizéttbat  \We can now invoke the inclusion-exclusion principle
significantly impact the accuracy of the model. This concern
will be addressed in future research with empirical testing U X| _ Z (_1)\1’\—1 ﬂ X )
XeX peP(X) Xep

A link's sending rate is restricted by how much it senseg find the size of the union of many uniform random sets.
that others are sending, in other words, their effective.r@ur

goal is to find a formula for this effective rate by calculgtin Th€orem 1. Let X be a collection of uniform random sets
the union of each random set representing a link's sendiffh parentsF, enumerated bV = {1,...,n}. Then

times. We begin by defining a uniform random set:

|X1-|'
| F3

(6)

A. Uniform Random Sets

_ - pl—1 ‘ﬂi@Fi‘
Definition 1. LetT and F' C T be finite sets. Also I&} : Q — UX|= > (-1) 111Xl Wh(l))- (8)
{0,1} for all t € T be a collection of i.i.d. random variables PEP(N) i€p ep it
on the probability spacéQ, A, P). ThenX : Q — 27, where Proof: The result follows from (6) and (7). [
X(w)={teF:&w)=1}, (3) B. Derivation of the First-Principles Model
is a uniform random set oi’. Moreover, if ' is a random  The sending constraint is given by
set, then
’ 7 7 < 17 ) L, 9
X(w)={t e Fw): &(w) =1} @) sitSisl Vi€ ©)

also defines a uniform random set éh The setF" is called where

the parent ofX. Si= > (=) fi(p)gi(p)h(p), (10)

pEP(L;)

The deterministic se€f’ can be considered as the entire time
block. If link i sends at rate;, link j hearsc;;s; of T being filp) = H Cij S (11)
occupied. Thus the;;s; that link ¢ hears must be a random jep
set chosen from a subset @f, namely during whichj did bi(p)
not heari. For this reason we include in the definition of a 9i(p) = mv (12)
uniform random set a parent set, or free spagdo which it ep T
is restricted. i) =1-s > (DI e, (13)

Now consider another link adding to the effective rate that ' EP(p) jep'

i senses. The effective rates p&ndk by themselves overlap : .
) . : . and the independence is given by
in the total effective rate a certain amount depending on how
much they sense each other. In this sense, the above definitio h(p) = H (1 —cij — cji + cijcii). (14)
still does not fully explain the interaction of uniform reomd (.5} E€P2(p)
sets. We thus define the independence of uniform random sellﬁ,: - S

€ receiving constraint is given by

Definition 2. Let X be a collection of uniform random sets

with parentsF, enumerated byV = {1,...,n}. Then their ri = di(1 = Ri)si, (15)
independence is where

WN) = E Pr(t € NX) ) Ri= > (=1 fim)h(p) (16)

— tenF HieN Pr(t c X7, ) F) . pEP(Li)
Let |- | denote the expected size of a random set. Averagiﬁad oy
over allt in NF, we have from (5) that i) = [T ais;- 17)
Jep
Prt € NX) = h(N) H Pi(t € X; NF), Note that (14) is an approximation of (5). If one link carrier
iEN

senses another link completely { = 1) then their random sets
do not intersect. If any two random setsjirdo not intersect,
then the intersection op is empty, which means thdt(p)

INX| 1X; N F|
—— = h(N .
mr — ) L e




should equal zero. Only when all random sets are independBefiinition 4. Given a contention grapiiL,C), the setS,
should it equal one. consists of all vectors of sending ratethat satisfy(9), where
The formulas forS; and R; follow immediately from
Theorem 1. In the case a?;, since there is no intermediary —1 \ "
v Si= > ( ) h(p) [ si
)

correlating link for the interfererd; is the entire space with 1—s
size 1. However, forS;, we need to derivey;(p), which
corresponds to the term of free spadesn the theorem. and
Link j observes a free spadg of sizel — ¢j;s;, in which ho) {0, Ji,jep:ic K,
p =

Jj€p

link 7 observes an occupied spa&e of sizec;;s;. The free
spaceF; consists of a portion during which link is not
sending, denoted’, and a portion during which link is
sending but not heard by, denoted¥' ;. Their sizes are given

1, otherwise

Theorem 2. Given a contention grapliL, C), S; = So.

by Proof: First, note thatS; is equivalent to the set of
T =1-s; satisfying
and si+max{S;(j):j€C(i)} <1, VielL,

W5 = (1 —cji)si. L R
whereS;(j) = Zlew)\i s;. To show thatS; = Ss, it suffices
Let F(p) = NjepF; and ¥ (p) = N, ¥5. Then, since every to show that, for anyi € L, the constraint boundary is
¥, is an independent uniform random set within a commasguivalent inS; and S,. Thus, letting
space of sizes;, we have by way of (6),
si=1—max{S;(j) : j € C(i)},

w(p) = e[Vl
P glPl=1 we seek to show that; = max {S;(j) : j € C(i)}.
B ‘ 1 Without loss of generality, let =0 and Ky, = {1,...,n},
=i H( — ¢ji)- where L(1) = {1,...,m} is the most constraining maximal
Iep cligue andS,(1) = >, s;. Then
Thus '
-1 [p|—1
6:0) 1= 1F()| =T + 190 si= ¥ (gm) 01l
=1- S + S H(l — Cji) PEP (Ko) Jep
jep n 1 z—1
= = NERY h(p) | | si
1w 3 0P e (.2 sm) el
P EP(p) jer’ )
n n z—1
We call this function the transparency ofo p, and use it to - N+ < -1 ) hip) T s;
simplify the notation ing;(p). ; ’ ; So(1) pegKo) g !
As a side note, it is straightforward to incorporate flow n
constraints into the model as well, by introducing mappings = §;(1) + Z sj
t(-) from the hop number in the flow to the index of the link j=mt1
considered. Then n Ly
St(m) < Ti(m—1) (18) + Z <50(1)) Z h(p) H 5j
for each hopm and each flow mapping ensures that no #=2 PEP:(Ko) jep
subsequent hop sends more than it receives. We therefore must determine that
IV. REDUCTION TO THECLASSICAL MODELS n n 1\ !
A. Reduction to the Maximal Clique Model PORTEDS (So(l)) >, hw)]]s ] =0
j=m+1 z=2 P. (K jE
The first-principles model reduces to the maximal c:quue7 &P (o) = (19)

model when carrier sensing is binary and symmetric. We proMgte thath(p) = 0 for any p that has at least two elements
this by showing that the set of feasible sending rates in offem L(1)\{0}, so that

model is equivalent to the feasible set in the other model.
We first formally define the two sets of feasible rates based > h(p) [ s; = So(1) > h(p) [ ] 55

on each model. peP(Ko) je€p PEP-—1(Ko\L(1)) jep

Definition 3. Given a contention grapiL,C), the setS; + Z h(p)Hsj.
consists of all vectors of sending rateghat satisfy(1). pEP. (Ko\L(1)) jep



This is substituted into the argument of the second sum of V. SOLUTION TO THE OPTIMIZATION PROBLEM

(19) to obtain Assuming thatd is always unity, the first-principles NUM

1 \*! problem is
- h -
(So(l)) 2 (p)HSJ P: maximize 3 Ilnr
pEP:(Ko) JEp ) 1
(—1)>—2 subjectto r; = (1 — R;)s;, Vi€ L, 1
B So(l)z72 Z h(p) Hsj si+8; <1, Vie L,
pEP-—1(Ko\L(1)) JjE€p
(—1)=1 where we have chosen the natural logarithm as the utility
* Sp(1)=—1 Z h(p)Hsj- function, enforcing proportional fairness. We do not show
pEP(Ko\L(1)) jep it here, but instances of this problem are frequently non-

convex. A branch and bound solution solves the problem by
successively dividing the hypercube in which the feasilele s
resides into smaller regions, and evaluating lower and uppe
bound functions for the optimal value in each region. The
bounds on each region allow one to conclude that some regions
Z h(p) HS _0 need not be divided further. A good tutorial on branch and
J ’ bound appears in [18].

To implement branch and bound, we need only develop

because Ko\ L(1)| < n. Thus,S; = So(1) andS; = S,. = efficient upper and lower bound functions for each sub-
problem of P. Let P; be thek-th sub-problem ofP in the

algorithm. A standard interior point solvep operating on
Py is sufficient to get a lower bound and the corresponding

We now show that when interferers of liildo not contend feasible point. To get an upper bound, we need to formulate
with each other, (15) and (16) from the first-principles mod@ new, convex probler®” such that its solution is an upper
reduce to (2) in the partial interference model. To do this, woound to the solution oP.

The second term above for someancels with the first term
in the corresponding + 1 equation, and the first term for
n

z =2 cancels with)>%_ ., s;. We need only check that the
second term for = n goes to zero. By inspection,

PEPR(Ko\L(1)) Jjep

B. Reduction to the Partial Interference Model

present a simple arithmetical theorem: To begin, we wish to replace the sending constraint in
o P with something that is convex and will enclose the old
Theorem 3. For some set of indices, constraints. This is done by replacing the effective réte

|1 with something smaller, since this will leave more room for
H(l ) =1- Z (=1) HIJ (20) s; to increase. Becaus§ is the size of the union of several
ek peP(L) jer sets with sizes:;;s;, it follows that S; > maxc;;s;. Finally

. . the new constraint
Proof: Without loss of generality, lef. = {1,...,n}.

We prove by induction. The base case= 1 holds trivially. si +maxc;js; <1

Assuming (20) holds for, we need to show that it holds for J€Li

n+ 1. Defining N = L\(n + 1), is equivalent to the family of constraints
H(l—Ij):(1—$n+1) H(I—ZCJ) Si + ¢S5 <1, \V/jELi,
jeL JEN

which are all linear.
_ Now we must modify the receiving constraint. First, note
-z (12 2 O] v g

_ that replacing it with
pEP(N) JEP

—1_ Z (=1)lPI-1 ij i < (1= Ri)s;

PEP(N) Jep does not change the solution to the problem.We next intreduc
—2nprt > (D) [ e the variable
pEP(N) JED yi = 7’1’/51'
=1- —)PI=TT ;. _ ,
Z (=) H ’ so that the inequality becomes
peP(L) JED

- yi + R <1

Applying this result to (2) is straightforward, replacing  Then R, is replaced in the same manner tisatwas replaced,
with a;;s;. Since under the limiting condition of no contendingyich yields the family of constraints

interferers we havéi(p) = 1, we see that (15) does indeed
reduce to (2). yi +aijs; <1, Vj € L.



The change of variables froifs, r) to (s,y) also modifies [2]
the appearance of the objective function to

Z (Ins; +1Iny;). 3]
icL

The new, convex problem that boungds [4]

P’ : maximize > (Ins; +Iny;)

i€l
subject to y; + a;55; < 1, Vi,j € L, i # j, [5]
s; +cijs; <1, Vi,j €L, i#j.

(22)
Let P, be the k-th sub-problem ofP’ in the algorithm.
Then ® operating onP}, is sufficient to get an upper bound.
Thus the branch and bound method, supplemented with tté
bound functions ofp(P,) and ®(P},), solvesP with efficient
computation at each step.

(6]

(8]
VI. CONCLUSION

This paper has analyzed the underlying models in optimizd®]
tion techniques for rate control in wireless networks, #pec
ically, the maximal cligue model and the partial interferen
model. A new model, called the first-principles model, wal$l
developed based on probability laws of random, overlapping
signals. This model accounts for partial and asymmetriderar
sensing and receiving interference. It has been shown tHai
when the first-principles model is limited to binary, symneet [12
sensing, it reduces to the maximal clique model; and when it
is limited to no carrier sensing between interfering links,
reduces to the partial interference model. [

The first-principles model still has its own limitations.
When measuring the effective rate (or amount the medium
is occupied) at a particular link, the model accounts for 14]
indirect scheduling of linkg and &k through link 4, but not
through any other link. We plan to analyze the significance of
this limitation in future research through empirical tegti [15]

The optimization problem for rate control induced by this
model is non-convex, and cannot readily be separated into
a form allowing a distributed solution; however, despite it
complexity, it is still useful in understanding the perfance
of rate controllers. If the model is an accurate represkemtaif
the behavior of real wireless networks, its associatedpé- 17
tion problem produces a tight upper bound on the performance
of all controllers. An outline of a branch and bound algarith
to do this has been presented in this paper. Future work V\Hﬁﬂ
implement this algorithm, and also run simulated and resdl te
scenarios to compare various rate controllers.
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