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Abstract—Achieving fair and optimal data rates in wireless
networks is an area of continued research. Distributed algorithms
have been developed directly from mathematical optimization
problems that guarantee fair and optimal rates. However, the
algorithms developed thus far are based on simplified models
of wireless networks. This research presents a first-principles
model of wireless networks that reduces to the classical models
under certain limiting conditions. The model uses random sets
to represent the times during which a channel is perceived to
be utilized. Although the resulting optimization problem is non-
convex, its solution can be derived offline to offer insight into
situations where the classical models succeed or fail. We provide
the framework for a branch and bound solution to this offline
problem.

I. I NTRODUCTION

Wireless networks are often used as a low-cost alternative to
wired infrastructures, while also accommodating mobile users.
The most prevalent medium access control (MAC) protocol
used in wireless networks is defined in the IEEE 802.11
standard. However, research has shown that when the wireless
network is extended to multiple hops the 802.11 MAC is
plagued with serious fairness and efficiency problems, some-
times completely starving one data flow in favor of another
[1]. This is in part due to the fact that sharing resources in a
wireless network is a fundamentally different problem thanin
a wired network and requires some theoretical understanding
to solve.

As a result of these problems, rate allocation in wireless
networks to achieve maximum network utilization and fairness
has become a popular area of research. Seminal research in
this area includes [2], [3] for wired networks, which has been
easily extended to wireless networks in [4], [5], [6], [7], [8],
[9], [10]. See [11] for a survey on this and other active research
topics for wireless networks.

This research attempts to answer a fundamental question:
Given a wireless network topology and a set of active data
flows between source nodes and destination nodes, what
allocation of rates is optimal and fair?In the network utility
maximization (NUM) approach, an objective function for the
network is defined, typically a sum of utility functions for each
link’s or flow’s sending rate, where the form of the utility
function defines a particular notion of fairness. Next, a set
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of constraints is used to model the unique characteristics of
the wireless network, such as carrier sensing or interference
constraints. The solution to this optimization problem will then
yield a set of rates that maximize network utility for the links
or flows. These rates can then be used as input to a rate
controller that sits on top of (or inside) the MAC protocol,
limiting the packet transmission rate for each flow or link.
When the optimization problem is convex, it can often be
translated into a distributed rate control algorithm, making it
practical to deploy in a wireless network.

Our focus is on the constraints used to model the wireless
network, as this is the critical piece in the NUM approach. If
the model is inaccurate, then the optimization problem may
not yield an accurate or optimal solution. We limit our study
to stationary, multi-hop wireless networks that use CSMA,
such as the 802.11 MAC. This broadly characterizes the most
widely-used wireless networks in the field, often referred to
as mesh networks.

This paper develops a first-principles model of wireless
networks for the rate control problem. By first-principles,
we mean that the most basic assumptions are made of how
multi-hop wireless networks with CSMA operate. In this
model, perceived times that the medium is occupied are
represented as a random set. Our model may also be classified
as a measurement based model, as it takes as inputs the
probabilities of links carrier sensing or interfering witheach
other. Such an approach is more realistic than physical layer
modeling, such as the various signal fading models with SINR
thresholds, and has been used significantly to model wireless
networks for various purposes [12], [13], [14], [15], [16],
[17], [9]. A combination of measurement based modeling
and physical layer modeling is used in [14] to determine
probabilities of carrier sensing and interference betweenpairs
of nodes. Kashyap, et al [16] extends this idea to also model
probabilities of carrier sensing and interference of groups of
nodes in order to determine the capacity of a wireless link. We
note specifically that their approach is very similar to ours,
modeling the states (transmitting, deferring, idle) of a node
as random sets. However, they also model specific aspects
of the 802.11 MAC as opposed to generic CSMA, and their
model predicts an uncontrolled environment, where there isno
rate controller other than the 802.11 MAC. In the future, we
hope to combine the qualities of ours and Kashyap’s models
to achieve further accuracy for rate control problems.

In this work, we show that, under limiting conditions, our
model reduces to previously proposed models in the literature.



si Sending rate of linki.
ri Receiving rate of linki.
di Delivery ratio of link i.
aij Receiving interference probability of linkj

interfering with link i.
L Set of links.
Li Set of all links inL excepti.
C Set of maximal cliques.
C(i) Set of maximal cliques containing linki.
L(j) Set of links in maximal cliquej.

TABLE I
NOTATION USED IN THE MAXIMAL CLIQUE MODEL AND THE PARTIAL

INTERFERENCE MODEL.

Specifically, with the assumption of binary, symmetric sensing,
our model reduces to the common maximal clique model used
by seminal research in this area [4], [8]. Likewise, with the
assumption of no carrier sensing between interfering links, our
model reduces to the partial interference model we previously
developed [10]. We conclude by showing that our model
induces an optimization problem and scoring mechanism that
can be used to compare the performance of various rate con-
trollers, should our model indeed prove to be more accurate.
In this case, solving the network utility maximization problem
using the first-principles model will provide an upper bound
on the performance of all rate control policies.

II. CLASSICAL MODELS

In this section we review two classical models of wireless
networks that have been used to solve the fair rate control
problem: themaximal clique model, which formulates con-
straints on the sending rates, and thepartial interference
model, which supplements the maximal clique model by
formulating constraints on the receiving rates. Table I presents
the notation used in these models.

A. The Maximal Clique Model

The maximal clique model is the most widely used model
for rate optimization in wireless networks [4], [8]. Figure1
shows how a contention graph is inferred from a wireless
network. This graph has a vertex representing each active link,
and each edge signifies that two linkscontend, or cannot send
at the same time. For each maximal cliquej, its links’ sending
ratess must sum to at most some clique capacity, which for
our purposes will always be 1:

∑

i∈L(j)

si ≤ 1, ∀j ∈ C. (1)

B. The Partial Interference Model

The partial interference model supplements the maximal
clique model with constraints on the receiving rates [10]. The
model is based on an empirical study of carrier sensing and
interference in a wireless mesh network [17]. The constraint
on each receiving rate is

ri = disi

∏

j∈Li

(1 − aijsj), ∀i ∈ L, (2)

where the delivery ratiodi implies inherent loss over the link.

Fig. 1. An example wireless network and its corresponding contention graph
with the maximal cliques circled. Links 1, 2, and 3 contend because they share
node B. Links 4 and 5 contend because sending nodes D and F are within
carrier sensing range of each other. Assuming RTS/CTS is enabled, links 3
and 4 contend because sending node D is within carrier sensing range of
receiving node C, which sends out CTS signals. This model infers that links
in a maximal clique have sending rates summing to at most one.

cij Carrier sensing probability of linkj being sensed by
link i.

Si Effective sending rate of all other links as observed
by link i.

Ri Effective (receiving) interference rate at linki due
to all other links.

Ki Set of links that contend with linki.
p1\p2 Set of elements inp1 but not inp2.
P(p) Set of all subsets ofp except the empty set.
Pz(p) Set of all subsets ofp with |p| = z.

TABLE II
ADDITIONAL NOTATION USED IN THE FIRST-PRINCIPLES MODEL.

III. T HE FIRST-PRINCIPLES MODEL

The design of the classical models raises some questions.
How do we know that mutually contending links (maximal
cliques) implies that their rates must sum to at most 1?
How can the maximal clique model be logically extended to
consider the case of partial carrier sensing, where there isa
continuous range of probabilities that nodes can sense each
other, and the notion of cliques is immediately destroyed?
Why, in the partial interference model, is the effect of each
interfering link multiplicative? We seek to answer these ques-
tions by developing a model from a more theoretical standpoint
by using random sets to represent observed times the medium
is occupied. The additional notation is given in Table II.

The following elementary assumptions are made:

• Discretization of time.Time is divided into large blocks
that are further divided into equally sized slots. During
each time slot, each link is either sending or not sending.

• Uniform random selection.For each time blockT , each
link has a setF ⊂ T of available time slots in which to
send, and a setX ⊂ F when it does send. Eacht ∈ F
has an equal probability of being inX .

• Negligible indirect scheduling.If link i senses linksj



and k sending duringXj , Xk ⊂ T , respectively, then
dependencies ofXj ∪ Xk on the sending times of any
link l 6= i, j, k are negligible.

When considering the effective rate of linksj and k as
perceived by linki, realistically there may be some other link
l (or even a set of other links) that cause the rates ofj and
k to overlap more or less than usual, which could in turn
affect how much linki can send. The last assumption simply
states that these effects are negligible. We recognize thatit can
significantly impact the accuracy of the model. This concern
will be addressed in future research with empirical testing.

A. Uniform Random Sets

A link’s sending rate is restricted by how much it senses
that others are sending, in other words, their effective rate. Our
goal is to find a formula for this effective rate by calculating
the union of each random set representing a link’s sending
times. We begin by defining a uniform random set:

Definition 1. LetT andF ⊂ T be finite sets. Also letξt : Ω →
{0, 1} for all t ∈ T be a collection of i.i.d. random variables
on the probability space(Ω,A, P ). ThenX : Ω → 2T , where

X(ω) = {t ∈ F : ξt(ω) = 1} , (3)

is a uniform random set onF . Moreover, ifF is a random
set, then

X(ω) = {t ∈ F (ω) : ξt(ω) = 1} (4)

also defines a uniform random set onF . The setF is called
the parent ofX .

The deterministic setT can be considered as the entire time
block. If link i sends at ratesi, link j hearscjisi of T being
occupied. Thus thecijsj that link i hears must be a random
set chosen from a subset ofT , namely during whichj did
not heari. For this reason we include in the definition of a
uniform random set a parent set, or free spaceF , to which it
is restricted.

Now consider another linkk adding to the effective rate that
i senses. The effective rates ofj andk by themselves overlap
in the total effective rate a certain amount depending on how
much they sense each other. In this sense, the above definition
still does not fully explain the interaction of uniform random
sets. We thus define the independence of uniform random sets:

Definition 2. Let X be a collection of uniform random sets
with parentsF, enumerated byN = {1, . . . , n}. Then their
independence is

h(N) = Et∈∩F

[

Pr(t ∈ ∩X)
∏

i∈N Pr(t ∈ Xi ∩ F)

]

. (5)

Let | · | denote the expected size of a random set. Averaging
over all t in ∩F, we have from (5) that

Pr(t ∈ ∩X) = h(N)
∏

i∈N

Pr(t ∈ Xi ∩ F),

| ∩ X|

| ∩ F|
= h(N)

∏

i∈N

|Xi ∩ F|

| ∩ F|
.

But |Xi ∩ F| is found by multiplying|Xi| by the probability
that an element inFi is also in∩F:

|Xi ∩ F| =
| ∩ F|

|Fi|
|Xi|

so that

| ∩ X| = h(N)| ∩ F|
∏

i∈N

|Xi|

|Fi|
. (6)

We can now invoke the inclusion-exclusion principle
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to find the size of the union of many uniform random sets.

Theorem 1. Let X be a collection of uniform random sets
with parentsF, enumerated byN = {1, . . . , n}. Then

|∪X| =
∑

p∈P(N)

(−1)|p|−1





∏

i∈p

|Xi|





∣

∣

∣

⋂

i∈p Fi

∣

∣

∣

∏

i∈p |Fi|
h(p). (8)

Proof: The result follows from (6) and (7).

B. Derivation of the First-Principles Model

The sending constraint is given by

si + Si ≤ 1, ∀i ∈ L, (9)

where
Si =

∑

p∈P(Li)

(−1)|p|−1fi(p)gi(p)h(p), (10)

fi(p) =
∏

j∈p

cijsj , (11)

gi(p) =
φi(p)

∏

j∈p φi(j)
, (12)

φi(p) = 1 − si

∑

p′∈P(p)

(−1)|p
′|−1

∏

j∈p′

cji, (13)

and the independence is given by

h(p) =
∏

{i,j}∈P2(p)

(1 − cij − cji + cijcji). (14)

The receiving constraint is given by

ri = di(1 − Ri)si, (15)

where
Ri =

∑

p∈P(Li)

(−1)|p|−1f ′
i(p)h(p) (16)

and
f ′

i(p) =
∏

j∈p

aijsj . (17)

Note that (14) is an approximation of (5). If one link carrier
senses another link completely (cij = 1) then their random sets
do not intersect. If any two random sets inp do not intersect,
then the intersection ofp is empty, which means thath(p)



should equal zero. Only when all random sets are independent
should it equal one.

The formulas for Si and Ri follow immediately from
Theorem 1. In the case ofRi, since there is no intermediary
correlating link for the interferers,F is the entire space with
size 1. However, forSi, we need to derivegi(p), which
corresponds to the term of free spacesF in the theorem.

Link j observes a free spaceFj of size1− cjisi, in which
link i observes an occupied spaceXj of size cijsj . The free
spaceFj consists of a portion during which linki is not
sending, denotedΓ, and a portion during which linki is
sending but not heard byj, denotedΨj. Their sizes are given
by

|Γ| = 1 − si

and
|Ψj | = (1 − cji)si.

Let F (p) = ∩j∈pFj andΨ(p) = ∩j∈pΨj . Then, since every
Ψj is an independent uniform random set within a common
space of sizesi, we have by way of (6),

|Ψ(p)| =

∏

j∈p |Ψj |

s
|p|−1
i

= si

∏

j∈p

(1 − cji).

Thus

φi(p) := |F (p)| = |Γ| + |Ψ(p)|

= 1 − si + si

∏

j∈p

(1 − cji)

= 1 − si

∑

p′∈P(p)

(−1)|p
′|−1

∏

j∈p′

cji.

We call this function the transparency ofi to p, and use it to
simplify the notation ingi(p).

As a side note, it is straightforward to incorporate flow
constraints into the model as well, by introducing mappings
t(·) from the hop number in the flow to the index of the link
considered. Then

st(m) ≤ rt(m−1) (18)

for each hopm and each flow mappingt ensures that no
subsequent hop sends more than it receives.

IV. REDUCTION TO THECLASSICAL MODELS

A. Reduction to the Maximal Clique Model

The first-principles model reduces to the maximal clique
model when carrier sensing is binary and symmetric. We prove
this by showing that the set of feasible sending rates in one
model is equivalent to the feasible set in the other model.

We first formally define the two sets of feasible rates based
on each model.

Definition 3. Given a contention graph(L, C), the setS1

consists of all vectors of sending ratess that satisfy(1).

Definition 4. Given a contention graph(L, C), the setS2

consists of all vectors of sending ratess that satisfy(9), where

Si =
∑

p∈P(Ki)

(

−1

1 − si

)|p|−1

h(p)
∏

j∈p

sj

and

h(p) =

{

0, ∃i, j ∈ p : i ∈ Kj,

1, otherwise.

Theorem 2. Given a contention graph(L, C), S1 = S2.

Proof: First, note thatS1 is equivalent to the set ofs
satisfying

si + max {Si(j) : j ∈ C(i)} ≤ 1, ∀i ∈ L,

whereSi(j) =
∑

l∈L(j)\i sl. To show thatS1 = S2, it suffices
to show that, for anyi ∈ L, the constraint boundary is
equivalent inS1 andS2. Thus, letting

si = 1 − max {Si(j) : j ∈ C(i)} ,

we seek to show thatSi = max {Si(j) : j ∈ C(i)}.
Without loss of generality, leti = 0 andK0 = {1, . . . , n},

whereL(1) = {1, . . . , m} is the most constraining maximal
clique andS0(1) =

∑m

j=1 sj . Then

S0 =
∑

p∈P(K0)

(

−1

S0(1)

)|p|−1

h(p)
∏

j∈p

sj

=
n

∑

z=1





∑

p∈Pz(K0)

(

−1

S0(1)

)z−1

h(p)
∏

j∈p

sj





=

n
∑

j=1

sj +

n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj





= S0(1) +

n
∑

j=m+1

sj

+

n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj



 .

We therefore must determine that

n
∑

j=m+1

sj +

n
∑

z=2

(

−1

S0(1)

)z−1




∑

p∈Pz(K0)

h(p)
∏

j∈p

sj



 = 0.

(19)
Note thath(p) = 0 for any p that has at least two elements
from L(1)\{0}, so that

∑

p∈Pz(K0)

h(p)
∏

j∈p

sj = S0(1)
∑

p∈Pz−1(K0\L(1))

h(p)
∏

j∈p

sj

+
∑

p∈Pz(K0\L(1))

h(p)
∏

j∈p

sj .



This is substituted into the argument of the second sum of
(19) to obtain

(

−1

S0(1)

)z−1
∑

p∈Pz(K0)

h(p)
∏

j∈p

sj =

−
(−1)z−2

S0(1)z−2

∑

p∈Pz−1(K0\L(1))

h(p)
∏

j∈p

sj

+
(−1)z−1

S0(1)z−1

∑

p∈Pz(K0\L(1))

h(p)
∏

j∈p

sj .

The second term above for somez cancels with the first term
in the correspondingz + 1 equation, and the first term for
z = 2 cancels with

∑n

j=m+1 sj. We need only check that the
second term forz = n goes to zero. By inspection,

∑

p∈Pn(K0\L(1))

h(p)
∏

j∈p

sj = 0,

because|K0\L(1)| < n. Thus,S0 = S0(1) andS1 = S2.

B. Reduction to the Partial Interference Model

We now show that when interferers of linki do not contend
with each other, (15) and (16) from the first-principles model
reduce to (2) in the partial interference model. To do this, we
present a simple arithmetical theorem:

Theorem 3. For some setL of indices,

∏

j∈L

(1 − xj) = 1 −
∑

p∈P(L)

(−1)|p|−1
∏

j∈p

xj . (20)

Proof: Without loss of generality, letL = {1, . . . , n}.
We prove by induction. The base casen = 1 holds trivially.
Assuming (20) holds forn, we need to show that it holds for
n + 1. DefiningN = L\(n + 1),

∏

j∈L

(1 − xj) = (1 − xn+1)
∏

j∈N

(1 − xj)

= (1 − xn+1)



1 −
∑

p∈P(N)

(−1)|p|−1
∏

j∈p

xj





= 1 −
∑

p∈P(N)

(−1)|p|−1
∏

j∈p

xj

− xn+1 +
∑

p∈P(N)

(−1)|p|−1xn+1

∏

j∈p

xj

= 1 −
∑

p∈P(L)

(−1)|p|−1
∏

j∈p

xj .

Applying this result to (2) is straightforward, replacingxj

with aijsj . Since under the limiting condition of no contending
interferers we haveh(p) = 1, we see that (15) does indeed
reduce to (2).

V. SOLUTION TO THE OPTIMIZATION PROBLEM

Assuming thatd is always unity, the first-principles NUM
problem is

P : maximize
∑

i∈L

ln ri

subject to ri = (1 − Ri)si, ∀i ∈ L,
si + Si ≤ 1, ∀i ∈ L,

(21)

where we have chosen the natural logarithm as the utility
function, enforcing proportional fairness. We do not show
it here, but instances of this problem are frequently non-
convex. A branch and bound solution solves the problem by
successively dividing the hypercube in which the feasible set
resides into smaller regions, and evaluating lower and upper
bound functions for the optimal value in each region. The
bounds on each region allow one to conclude that some regions
need not be divided further. A good tutorial on branch and
bound appears in [18].

To implement branch and bound, we need only develop
efficient upper and lower bound functions for each sub-
problem of P. Let Pk be thek-th sub-problem ofP in the
algorithm. A standard interior point solverΦ operating on
Pk is sufficient to get a lower bound and the corresponding
feasible point. To get an upper bound, we need to formulate
a new, convex problemP′ such that its solution is an upper
bound to the solution ofP.

To begin, we wish to replace the sending constraint in
P with something that is convex and will enclose the old
constraints. This is done by replacing the effective rateSi

with something smaller, since this will leave more room for
si to increase. BecauseSi is the size of the union of several
sets with sizescijsj , it follows that Si ≥ max cijsj . Finally
the new constraint

si + max
j∈Li

cijsj ≤ 1

is equivalent to the family of constraints

si + cijsj ≤ 1, ∀j ∈ Li,

which are all linear.
Now we must modify the receiving constraint. First, note

that replacing it with

ri ≤ (1 − Ri)si

does not change the solution to the problem.We next introduce
the variable

yi = ri/si

so that the inequality becomes

yi + Ri ≤ 1.

Then,Ri is replaced in the same manner thatSi was replaced,
which yields the family of constraints

yi + aijsj ≤ 1, ∀j ∈ Li.



The change of variables from(s, r) to (s, y) also modifies
the appearance of the objective function to

∑

i∈L

(ln si + ln yi) .

The new, convex problem that boundsP is

P′ : maximize
∑

i∈L

(ln si + ln yi)

subject to yi + aijsj ≤ 1, ∀i, j ∈ L, i 6= j,
si + cijsj ≤ 1, ∀i, j ∈ L, i 6= j.

(22)
Let P′

k be the k-th sub-problem ofP′ in the algorithm.
ThenΦ operating onP′

k is sufficient to get an upper bound.
Thus the branch and bound method, supplemented with the
bound functions ofΦ(Pk) andΦ(P′

k), solvesP with efficient
computation at each step.

VI. CONCLUSION

This paper has analyzed the underlying models in optimiza-
tion techniques for rate control in wireless networks, specif-
ically, the maximal clique model and the partial interference
model. A new model, called the first-principles model, was
developed based on probability laws of random, overlapping
signals. This model accounts for partial and asymmetric carrier
sensing and receiving interference. It has been shown that
when the first-principles model is limited to binary, symmetric
sensing, it reduces to the maximal clique model; and when it
is limited to no carrier sensing between interfering links,it
reduces to the partial interference model.

The first-principles model still has its own limitations.
When measuring the effective rate (or amount the medium
is occupied) at a particular linki, the model accounts for
indirect scheduling of linksj and k through link i, but not
through any other link. We plan to analyze the significance of
this limitation in future research through empirical testing.

The optimization problem for rate control induced by this
model is non-convex, and cannot readily be separated into
a form allowing a distributed solution; however, despite its
complexity, it is still useful in understanding the performance
of rate controllers. If the model is an accurate representation of
the behavior of real wireless networks, its associated optimiza-
tion problem produces a tight upper bound on the performance
of all controllers. An outline of a branch and bound algorithm
to do this has been presented in this paper. Future work will
implement this algorithm, and also run simulated and real test
scenarios to compare various rate controllers.
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