Let’s Authenticate: Automated Cryptographic Authentication for the Web with
Simple Account Recovery

James S. Conners
Brigham Young University

Abstract

The FIDO2 Alliance is proposing standards for crypto-
graphic authentication that are intended to replace passwords.
We show that their standards could lead to difficult regis-
tration, cumbersome account recovery, and potential privacy
leaks and tracking. We propose an alternative architecture
based on certificates instead of bare keys that provides auto-
matic registration and login and simplified account recovery.
We use a framework to compare our approach to related work,
illustrating usability, security, and privacy trade-offs.

1 Introduction

Researchers seeking to improve user authentication face a
quandary — passwords have well-known flaws, but no al-
ternative has been shown to be better. It’s well known that
users choose weak passwords [3], that website rules can be
counterproductive [4] and have difficulty remembering strong
passwords [11]. As a result, they often choose weak pass-
words or reuse passwords across sites. Password managers
greatly simplify password use, but adoption is far from univer-
sal [9]. Moreover, even when users do select strong, unique
passwords, service providers may instead become a weak link
if they fail to follow best practices with respect to password
storage. Despite these issues, a thorough review of alterna-
tives by Bonneau et al. found that no replacement schemes
comes close to supplying the benefits of passwords, and “none
even retains the the full set of benefits that legacy passwords
already provide” [1]. They show that when replacements offer
significant security benefits in comparison to passwords they

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

USENIX Symposium on Usable Privacy and Security (SOUPS) 2019.
August 11-13, 2019, Santa Clara, CA, USA.

Daniel Zappala
Brigham Young University

are also more costly or more difficult to use. Limitations of
proposed alternatives to passwords mentioned by Herley and
van Oorschot include requiring users to purchase or carry
additional hardware, fragility due to a single point of failure
such as for a single sign-on scheme, or having inadequately
studied usability [5]. Decades of research suggest there is un-
likely to be a solution that kills off passwords, and tradeoffs
among solutions will always exist.

Despite this bleak outlook, in recent years there has been a
resurgence of interest in augmenting or replacing passwords
with cryptographic authentication, meaning authentication
backed by public-key cryptography. FIDO?2 is being touted as
the standard for public-key-based authentication on the web
and has begun to be adopted by web browsers. FIDO2 works
by having users adopt authenticators, which can be internal
to their device or external, such as a hardware token (e. g.,
Yubikey) or a smartphone app (e. g., Duo). The authenticator
generates a private-public keypair for a website at registration
and the website then stores the public key as an identifier. To
authenticate to the website, the user requests sign-in, and the
website requests the user to sign some piece of data with the
private key that matches the stored public key. The user signs
the data, returns it, and is authenticated.

While this momentum is encouraging, substantial work
is still needed to ensure that cryptographic authentication
provides a usable alternative to passwords for users. The
FIDO?2 standards are still very early in the deployment phase
and only a little work has been done to date demonstrating
their usability for second factor authentication [10], with no
work done on their use for first factor authentication, as a
password replacement. There are numerous scenarios that
must be considered, including registration, login, and account
recovery, as well as privacy concerns to consider.

In this paper we explore an alternative design, called Let’s
Authenticate, that provides automated account registration
and login, along with simple account recovery when an au-
thenticator is lost. Let’s Authenticate is inspired by Let’s
Encrypt and seeks to similarly make it easy to issue certifi-
cates to users, which they can then use to register and login

to websites. Certificates are issued based on proving own-
ership of an account (e.g., with a username and password),
which allows for easy re-issuance if an authenticator device
that stores certificates is lost. We believe grounding owner-
ship of accounts in ownership of passwords, at least initially,
can help users make the transition to stronger cryptography
by bootstrapping it off a method they already use. In addi-
tion, using certificates instead of bare public keys allows for
easy registration, login, and renewal, as well as authorization
and deauthorization of devices for account access. We explain
how Let’s Authenticate works, compare this approach to other
work to illustrate usability, security, and privacy trade-offs,
and outline a research agenda.

2 Related Work

Cryptographic authentication has been most prominently used
in Belgium [2] and Estonia [7], where citizens are issued an
electronic identification card, or eID. Citizens can obtain an
elD at a municipal center by proving their identity, for exam-
ple with a passport. These eIDs act as a standard identification
card, but have three certificates installed directly into the card,
on secure hardware. These three certificates can be used for
authentication, non-repudiation, and to identify the card to
the government for certificate verification. Many countries
have now adopted elDs, and some are adding systems that
allow a smartphone to be used in place of the eID using a
PKI-capable SIM card and a user-assigned PIN.

Several academic systems based on cryptographic authen-
tication have been created. Loxin [12] proposed issuing a
single certificate to each user, which would be stored in a
smartphone app and used to authenticate to web sites. The
authors suggest revocation can be handled by generating a
backup key pair that can be printed out and used in case the
smartphone is lost. The n-Auth system [8] proposed using
public keys and an authentication protocol to enable a smart-
phone to register and login users on websites. Their system
does not allow users to have multiple authenticators or to
recover accounts after an authenticator is lost.

Mozilla Persona, a now defunct authentication method,
was a set of protocols that allowed email providers to issue
their users certificates certifying ownership of a given email
address. Persona provided a simpler registration and login
process by using the user’s email address as their identity,
meaning websites did not need additional information during
signup. It also implemented the BrowserID protocol, allowing
communication between the browser and email provider to
obtain certificates. To allow for recovery, Persona suggested
users could add a secondary email address to their account.
Persona protects user privacy by ensuring that email providers
are not given information they can use to track user logins to
websites. However, colluding websites can still track users be-
cause email addresses are used as an identifier—users would

need to generate separate email addresses per website to avoid
this.

Persona had significant problems with adoption. First,
websites were required to implement Persona. Second, web
browsers were required to implement the BrowserID proto-
col. Finally, email providers were required to become identity
providers. They attempted to solve these issues by imple-
menting a fallback identity provider, creating a cross-browser
library for the BrowserID protocol, and by hosting a verifica-
tion API so that websites can easily verify user credentials.

FIDO?2 is an effort to replace passwords on the web, consist-
ing of two standards. First, WebAuthn [10], standardized by
the W3C, specifies how a web application can use JavaScript
to help a user register and login using an authenticator. An
authenticator handles cryptographic logins and can be either
an app on a device (such as a laptop) or an external device
such as a hardware token or a smartphone. Second, CTAP2,
standardized by the Fido Alliance, specifies a method for
web browsers to communicate with external authenticator via
USB, BlueTooth, or NFC.

WebAuthn provides a standard user experience for authen-
ticating over the web using public-key cryptography. It is
a generic standard that allows for authenticators to provide
either second-factor or first-factor authentication. The basic
actions include (a) a user registers an authenticator with a
relying party, (b) the authenticator generates a public/private
key pair unique to the relying party, and (c) the user can then
authenticate to the relying party at any subsequent time. Au-
thenticators can sign each new key pair with an attestation
certificate, certifying that a specific key pair originated within
a given device. The attestation certificate can be chained
to a root of trust. Relying parties can specify features that
an authenticator must support, such as being an external au-
thenticator or obtaining user verification, such as through a
password, PIN, or biometric. These features are also certified
through an attestation certificate. The key used for attestation
certificates is stored in hardware when the authenticator is
manufactured, though authenticators without this capability
can use self-signed certificates.

3 WebAuthn Analysis

The WebAuthn standard provides strong security but has not
yet been tested with respect to usability as a password re-
placement, nor been analyzed with respect to privacy. We
examine some of the architectural choices made in design-
ing WebAuthn from the perspective of usability and identify
several concerns:

o Difficult and confusing registration: Registration in We-
bAuthn is handled by the relying party. While WebAuthn
provides a unified authentication flow for users, provid-
ing some consistency, a user must still register an authen-
ticator for each individual website visited. Work done

registering an authenticator at one site does not reduce
the work needed to register the authenticator with a sec-
ond site. A website can impose restrictions on which au-
thenticators it supports, so users may not know whether
they have a valid authenticator until registration time.
Since registration for some sites will be for second-factor
authentication and others for first-factor, users may be
confused about how to use authenticators and when they
need to use them for which sites.

o Cumbersome account recovery: Backup of login creden-
tials is not supported. Thus, if a user registers a single
authenticator with a web site, then loses that authenti-
cator, they will lose access to their account. To provide
account recovery, a user is required to register multiple
authenticators so that backup authenticators can be used
in case one is lost. Moreover, if a lost authenticator does
not require user verification (e.g., just a button press),
then someone who finds or steals the authenticator can
gain access to accounts and lock out the true owner. In
this case, a race condition is created, whereby the first
to login and deactivate other devices (the true owner or
the thief) will win permanent access to the account. A
website could alternatively support traditional account
recovery methods for users, but this lessens the secu-
rity offered by the scheme and requires each website to
follow best practices.

e Potential for authenticator bloat: Web sites are free to
impose restrictions on authenticators, so a user may need
different authenticators for different sites. The spec cur-
rently provides enough freedom that it could be possible
that each website could require unique authenticators,
though this is not in keeping with the spirit of the specifi-
cation. However, even if the number of different authen-
ticators a user is required to obtain is small, this could
cause confusion. For example, a user may not remember
which authenticator is used for which site or may not
have a given authenticator in their possession at the time
of login. In addition, the spec allows software authen-
ticators, which should use a secure enclave for storing
private keys. If a user is required to own multiple authen-
ticators, along with other secure applications, storage in
an enclave could become scarce.

We also consider issues related to privacy in WebAuthn.
The WebAuthn spec has been designed with privacy in mind,
based on the idea that authenticators generate a separate pub-
lic and private key pair for each relying party. Ideally, this
means that a relying party learns no information about the user
from their authentication and colluding relying parties cannot
track users across websites. There are, however, a number of
ways in which privacy can be violated in WebAuthn:

e Privacy leaks are possible: Relying parties prompt users
for a username or email address, thus colluding relying

parties could track users if they consistently use the same
information. This is the same problem that exists for
current password-based authentication.

o Tracking is possible: Relying parties control the type
of attestation used. In the worst case, attestation could
be used to identify and track an individual user, because
each authenticator may have a unique attestation key.
The WebAuthn spec advises manufacturers of authenti-
cators to assign non-unique attestation keys in batches of
100,000, but there is no way to enforce this and a man-
ufacturer may simply be careless. The spec also allows
for anonymization certificate authorities, which help a
user to hide their identity, but relying parties may require
that this is disabled.

Users will thus need significant help with ensuring they
do not unknowingly reveal metadata or use authenticators or
attestation methods that can be used to track them.

4 Let’s Authenticate

Our design of the Let’s Authenticate architecture is based on
three goals: (a) automated issuance of certificates for regis-
tration and login, (b) easy account recovery in case of lost
authenticators, and (c) preserving privacy for users. We de-
scribe our architecture, explain how it meets these goals, and
discuss how we overcome some of the challenges identified
in the WebAuthn specification.

4.1 Architecture

Let’s Authenticate consists of four entities: a website, a client
device, an authenticator, and a certificate authority. As with
WebAuthn, the website can prompt the user to register or login.
The user interacts with the web browser on the client device
and an authenticator, which can be built into the client device
or be a separate device like a smartphone. The authenticator
uses the certificate authority to obtain certificates that allow it
to register and login with the website.

To illustrate the architecture and our design goals, we walk
through the account creation process and the registration/login
process. We consider the case where the authenticator is a
smartphone.

To create an account, the authenticator prompts the user to
enter a username and password. The authenticator checks with
the Certificate Authority to ensure the username is unique and
creates an account with the Certificate Authority using this
username and password combination.

Figure | shows the registration/login process.

1. When the user wishes to register or login with a website,
the website provides a unique code to the client device.

Client Device Website

" @ Unique registration/login code g

@ Certificate chain

(2 Website address authorizing login

and code

@ Revocation

status

@ Certificate

v

Authenticator Certificate Authority

Figure 1: Let’s Authenticate registration/login process

2. The web browser sends the website address and its code
to the authenticator (e. g., using CTAP2) or the user en-
ters the code on the authenticator of their choice (e. g.,
by scanning a QR code or manually entering it).

3. If the user approves the registration or login with the web-
site on the authenticator, then the authenticator requests
a certificate for this website. To do this the authenticator
will generate a unique identifier using a one-way hash
composed of the username, password and website ori-
gin. The certificate authority issues a certificate for that
identifier and stores the unique identifier with that user’s
account.

4. The authenticator sends the website a certificate signing
the code with one of its key pairs, along with the certifi-
cate signing that key and the unique identifier from the
CA.

5. The website verifies the certificates and checks revoca-
tion status, then optionally creates an account for that
unique identifier and logs in the client device.

We note that registration and login are automated. Because
the user obtains a certificate attesting to a unique identity, the
relying party can check whether an account already exists
create one if needed. The user only needs to be prompted
regarding whether they want a new account created for this
web site. This greatly simplifies the burden for the user.

Moreover, by using certificates tied to a unique identifier
associated with the user’s account, account recovery is very
simple. If a user loses their authenticator, they can obtain
a new authenticator, and from that authenticator enter their
account credentials. Once they prove ownership of the user-
name/password, and generate new public/private key pairs, the
Let’s Authenticate CA can provide them with certificates for
their unique identifiers. The user can recover the unique iden-
tifiers because they are composed of the username, password,

and website address. They can then login to the accounts they
own with these certificates.

Let’s Authenticate protects privacy for users by ensuring
that each website receives a certificate for a different unique
identifier, so colluding websites cannot track users. Certifi-
cates contain no identifying information. In addition, the Cer-
tificate Authority issues certificates for the unique identifiers
but does not receive information about which websites the
user logs into. The Certificate Authority cannot reverse the
one-way hash used for the identifier and does not know the
user’s password so it cannot compute hashes itself.

Let’s Authenticate also automates revocation for users. A
user can enter a name that identifies the authenticator. When
a user loses an authenticator, they can revoke access by us-
ing a new or backup authenticator and proving ownership
of the username/password. The CA can keep a Certificate
Revocation List or CRL listing the certificates that have been
revoked for the lost authenticator. Websites can periodically
download updates to the CRL in aggregate, so that Certificate
Authorities do not learn which certificates are being queried.

We note that certificates should be protected in case the
authenticator is lost. Private keys can be stored in secure en-
claves and the certificate store can be protected with separate
authentication, such as a PIN or biometric.

4.2 Account challenges

We currently use a password as the method for proving own-
ership of an account. A traditional username/password combi-
nation is familiar to users and could serve as a good bridge to
stronger cryptographic authentication. The primary difficulty
is encouraging users to adopt strong passwords, similar to the
need for a strong master password for a password manager.
Users will need to remember this password in case of authen-
ticator loss, or to setup additional authenticators, and could be
encouraged to keep the password offline, such as by writing
it down and keeping it in a safe place. To prevent theft and
online guessing attacks, the CA uses a PAKE protocol, such
as OPAQUE [6], where all that is disclosed is a cryptographic
proof of knowledge of the password. It is important that the
CA does not know the user’s password because this prevents
them from deriving unique identifiers for websites.

It may be possible to design other challenge methods, for
example to avoid reliance on users needing to choose and
remember a strong password. One such challenge could be
performed using secure messaging, such as Signal or iMes-
sage. This allows the use of familiar text message verification,
while allowing for stronger security properties than SMS by
using end-to-end encryption.

4.3 Certificates vs. Keys

Using certificates for authentication instead of bare keys pro-
vides some significant advantages. First, registration and login

can be automated across multiple authenticators, since the
Certificate Authority attests to ownership of a unique iden-
tifier. Second, recovery is simple because a user can easily
obtain a new certificate for a unique identifier once they prove
their identity to a CA. Third, certificates can prevent authen-
ticator bloat because as long as a user has a valid certificate
for an account, it doesn’t matter which authenticator they use.
At first glance, certificates appear to offer worse privacy be-
cause usually certificates contain metadata identifying a party.
However, by avoiding additional metadata such as a name or
email address and avoiding reusing identifiers we can ensure
certificates don’t enable identification or tracking.

5 Discussion

We compare authentication schemes in Table | using a subset
of relevant properties from The Quest To Replace Passwords,
by Bonneau et al. [1]. Ratings for passwords, LastPass, and
Mozilla Persona are taken directly from their work. We rate
WebAuthn and Let’s Authenticate using their definitions for
the properties. The properties are grouped, in order, as usabil-
ity, deployability, and security/privacy properties.

Memory-wise Effortless: A user does not have to remember
any kind of secret. Quasi support is granted if a user only has
to remember a single secret. WebAuthn support depends on
whether a given authenticator uses a PIN or biometric for user
verification. Let’s Authenticate has quasi support because a
user has to remember a single password.

Scalable for Users: The scheme does not increase effort
required by the user for each successive account. WebAuthn
does not support thus property because each website requires
an individual registration. Let’s Authenticate is scalable be-
cause a single registration process with the Certificate Author-
ity is all that is required.

Nothing to Carry: A user does not have to carry an extra
device in order to use the scheme. Quasi support is given if
the device is something that the user would carry everywhere
already, such as a cellular device, excluding mobile computers
and tablets. WebAuthn and Let’s Authenticate support depend
on the authenticator, since these could be a physical token or
software that is included with the client device.

Easy to Learn: A user, with no experience with the scheme,
can figure out how to use the system with minimal trouble
and recall how to use the scheme. WebAuthn and Let’s Au-
thenticate were both deemed to support this property because
they are similar to other schemes given this rating. However,
both systems require user studies to demonstrate adequate
ease of use.

Efficient to Use: The time the user spends when they try to
authenticate is reasonably short, including registration with
a website. WebAuthn depends on how many authenticators
the user owns. Since each website can specify different re-
quirements, a user may have to fiddle with a variety of de-
vices or software. Let’s Authenticate is rated as supporting

Table 1: Rating of authentication systems

%)
“ Q| ~
N
g NI e
T g= | F &
QE Sl o =| =
$38 SIFEST
S32 22 3E=s
éxbéb%L} gﬂ.‘&&
R R R R
2w EISOE RS
5SS SR SK %SISR
ESSE 232 2= ==& E
SS3ES PSS E
System SAZRTRZAKEZS
Passwords o o 0 00 o o o o
LastPass e O @ @ O|O o o °
MozillaPersona o o o o o ole °
WebAuthn « « o « « e « « «
Let’s Authenticate © o « © o ol @ o o °

o full support, o quasi support, « support depends on the
authenticator type or the website, (blank) no support

the property because a user is only required to use a single
authenticator of their choosing.

Easy Recovery from Loss: A user can conveniently regain
the ability to authenticate if a token is lost or credentials for-
gotten. Quasi support is given if recovery is possible but extra
time or inconvenience is incurred. WebAuthn requires user
to separately pre-register backup authenticators for each web-
site. Let’s Authenticate makes it easy to recover an account
by proving ownership of a username/password. In addition,
Let’s Authenticate could provide backup account recovery
mechanisms if the user forgets their password.

Negligible Cost to User: The total cost for each user of the
scheme, including costs client costs for extra devices, and any
costs to the website for equipment and software, is negligible.
Quasi support is given if there is small but non-negligible cost.
WebAuthn support depends on the authenticator requirements
for each website. It is possible for each website to require
the use of a different, specific authenticator and the user may
be required to purchase multiple devices. Let’s Authenticate
does not require the user to purchase an additional device.

Server Compatible: The scheme is compatible with text-
based passwords, so websites do not need to change their
authentication method. Neither WebAuthn nor Let’s Authen-
ticate are server compatible.

Resilient to Phishing: An attacker cannot collect creden-
tials that can later be used to impersonate a user. Both We-
bAuthn and Let’s Authenticate are resilient to phishing since
cryptographic credentials are used for each site and these
are negotiated by the browser or authenticator based on the
website’s identity.

Reslient to Theft: If the scheme uses a physical device,
another person who gains access to the device cannot use
the object for authentication. Quasi support is awarded if

protection, such as a PIN is used. Some WebAuthn authenti-
cators may use a PIN or biometric, but others may not. Let’s
Authenticate authenticators have the same property, but the
architecture includes additional protection from theft by al-
lowing the owner of a device to deauthorize it after proving
knowledge of their account password.

No Trusted Third Party: The scheme does not rely on a
trusted third party. Websites using WebAuthn may rely on at-
testations from manufacturers of authenticators, e.g. to ensure
that the user must enter a PIN or biometric to use the device.
Websites that rely on these would be using a trusted third
party. Let’s Authenticate uses identity providers as trusted
third parties.

Unlinkable: 1f websites collude, they cannot learn from
information passed during authentication whether the same
user is authenticating to both. For WebAuthn this depends
on whether manufacturers of authenticators use non-unique
attestation keys. For Let’s Authenticate, each website is sent
a different certificate using a unique identifier and a unique
private key. The unique identifier is opaque to websites and
Certificate Authorities, and linkability requires collusion be-
tween a Certificate Authority (which has a list of identifiers
per user) and websites.

Overall, we find that Let’s Authenticate has significant ad-
vantages relative to WebAuthn, particularly that it is scalable
for users and easy recovery from loss. It likely also has ad-
vantages in being efficient to use, having negligible cost to
users, resilience to theft, and being unlinkable, since these all
depend on how authenticators are used. These changes come
at the cost of using a trusted third party to issue certificates.
As compared to Mozilla Persona, Let’s Authenticate has the
advantage of being resilient to phishing and unlinkable, at the
cost of not currently being compatible with websites.

6 Future Research

Future work must be done to fully examine our proposed
system. We plan to conduct an in-depth security and privacy
analysis. We also plan to run a longitudinal user study to
ensure Let’s Authenticate certificates meet the goals we have
outlined. User opinions are of particular interest, specifically
regarding password replacement, ease of use, and the security
and privacy options provided by the architecture. We are also
exploring designs for additional account challenges and are
considering how using short-lived certificates could simplify
revocation.

References

[1] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot,
and Frank Stajano. The quest to replace passwords: A

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

framework for comparative evaluation of web authenti-
cation schemes. In 2012 IEEE Symposium on Security
and Privacy, pages 553-567. IEEE, 2012.

Danny De Cock, Christopher Wolf, and Bart Preneel.
The Belgian electronic identity card (overview). In
Sicherheit, volume 77, pages 298-301, 2006.

Dinei Florencio and Cormac Herley. A large-scale study
of web password habits. In Proceedings of the 16th
International conference on World Wide Web, pages 657—
666. ACM, 2007.

Dinei Floréncio, Cormac Herley, and Paul C
Van Oorschot. An administrator’s guide to Inter-
net password research. In 28th Large Installation
System Administration Conference, pages 44-61, 2014.

Cormac Herley and Paul Van Oorschot. A research
agenda acknowledging the persistence of passwords.
IEEE Security & Privacy, 10(1):28-36, 2011.

Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu.
Opaque: an asymmetric PAKE protocol secure against
pre-computation attacks. In Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, pages 456—-486. Springer, 2018.

Tarvi Martens. Electronic identity management in es-
tonia between market and state governance. Identity in
the Information Society, 3(1):213-233, 2010.

Roel Peeters, Jens Hermans, Pieter Maene, Katri Gren-
man, Kimmo Halunen, and Juha H#iki6. n-auth: Mobile
authentication done right. In Proceedings of the 33rd An-
nual Computer Security Applications Conference, pages
1-15. ACM, 2017.

Aaron Smith. What the public knows about
cybersecurity. Pew Research Center, 2017.
https://www.pewinternet.org/2017/03/22/

what-the-public-knows-about-cybersecurity/.

W3C. Web authentication: An API for accessing public
key credentials, March 2019. https://www.w3.0rg/
TR/webauthn/cross-platform-attachment.

Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair
Grant. Password memorability and security: Empirical
results. IEEE Security & Privacy, 2(5):25-31, 2004.

Bo Zhu, Xinxin Fan, and Guang Gong. Loxin—a so-
lution to password-less universal login. In 2014 IEEE
Conference on Computer Communications Workshops,
pages 488—493. IEEE, 2014.

https://www.pewinternet.org/2017/03/22/what-the-public-knows-about-cybersecurity/
https://www.pewinternet.org/2017/03/22/what-the-public-knows-about-cybersecurity/
https://www.w3.org/TR/webauthn/cross-platform-attachment
https://www.w3.org/TR/webauthn/cross-platform-attachment

	Introduction
	Related Work
	WebAuthn Analysis
	Let’s Authenticate
	Architecture
	Account challenges
	Certificates vs. Keys

	Discussion
	Future Research

