
TrustBase: An Architecture to Repair and Strengthen
Certificate-based Authentication

Mark O’Neill Scott Heidbrink Scott Ruoti Jordan Whitehead Dan Bunker
Luke Dickinson Travis Hendershot Joshua Reynolds

Kent Seamons Daniel Zappala
Brigham Young University

mto@byu.edu, sheidbri@byu.edu, ruoti@isrl.byu.edu, jaw@byu.edu, dbunked@gmail.com

luke@isrl.byu.edu, tmanhendy@isrl.byu.edu, joshua@isrl.byu.edu

seamons@cs.byu.edu, zappala@cs.byu.edu

Abstract
The current state of certificate-based authentication is
messy, with broken authentication in applications and
proxies, along with serious flaws in the CA system. To
solve these problems, we design TrustBase, an architec-
ture that provides certificate-based authentication as an
operating system service, with system administrator con-
trol over authentication policy. TrustBase transparently
enforces best practices for certificate validation on all
applications, while also providing a variety of authentica-
tion services to strengthen the CA system. We describe a
research prototype of TrustBase for Linux, which uses a
loadable kernel module to intercept traffic in the socket
layer, then consults a userspace policy engine to evaluate
certificate validity using a variety of plugins. We evaluate
the security of TrustBase, including a threat analysis, ap-
plication coverage, and hardening of the Linux prototype.
We also describe prototypes of TrustBase for Android
and Windows, illustrating the generality of our approach.
We show that TrustBase has negligible overhead and uni-
versal compatibility with applications. We demonstrate
its utility by describing eight authentication services that
extend CA hardening to all applications.

1 Introduction

Server authentication on the Internet currently relies on
the certificate authority (CA) system to provide assurance
that the client is connected to a legitimate server and not
one controlled by an attacker. Unfortunately, certificate
validation is challenged by significant problems. First, ap-
plications frequently do not properly validate the server’s
certificate [20, 17, 5, 35]. This is caused by failure to
use validation functions, incorrect usage of libraries, and
also developers who disable validation during develop-
ment and forget to enable it upon release. Second, TLS
interception, used by numerous firewall appliances and
software (as well as malware), compromises the integrity

of end-to-end encryption [24, 34], with many firewalls
having significant implementation bugs that break authen-
tication [7, 11]. Third, the CA system itself is vulnerable
to being hijacked even when applications and proxies are
implemented correctly. This is largely due to the fact
that most CAs are able to sign certificates for any host,
reducing the strength of the CA system to that of the weak-
est CA [12]. This weakness was exploited in the 2011
DigiNotar hack [25], and is exacerbated by CAs that do
not follow best practices [31, 10] and by governmental
ownership and access to CAs [13, 40].

Due to these problems, there are a number of recent
proposals to improve or replace the current CA trust
model. These include multi-path probing [31, 41, 1, 23]
or other systems that vouch for the authenticity of a certifi-
cate [15, 2, 3], DNS-based authentication [21], certificate
pinning [16, 32], and audit logs [27, 39, 14, 26]. Unfortu-
nately, the majority of applications have not yet integrated
these improvements. Even relatively simple fixes, such
as certificate revocation, are beset with problems [29].
The result is that there is no de facto standard regarding
where and how certificate validation should occur, and it
is currently spread between applications, TLS libraries,
and interception proxies [11].

Several projects have tried to address these issues, fix-
ing broken authentication in existing applications, while
providing a means to deploy improved authentication ser-
vices. Primary among these is CertShim, which uses the
LD PRELOAD environment variable to replace functions in
dynamically-loaded security libraries [4]. However, this
approach does not provide universal coverage of all exist-
ing applications, does not provide administrators singular
control over certificate authentication practices, does not
protect against several important attacks, and has signifi-
cant maintenance issues. Fahl takes a different approach
that rewrites the library used for authentication by An-
droid applications [18], while also including pluggable
authentication modules. This approach is well-suited for
Android because all applications are written in Java, but



it is difficult to extend this approach to operating sys-
tems that provide more general programming language
support.

In this paper, we explore a different avenue for fixing
these problems by centralizing authentication as an operat-
ing system (OS) service and giving system administrators
and OS vendors control over authentication policy. These
two motivating principles result in TrustBase, an archi-
tecture for certificate authentication that secures existing
applications, provides simple deployment of improved
authentication services, and overcomes shortcomings of
previous approaches. TrustBase provides universal cov-
erage of existing applications, supports both direct and
opportunistic TLS1, is hardened against unprivileged lo-
cal adversaries, is supported on both mobile and desktop
operating systems, and has negligible overhead.

To centralize authentication as an operating system ser-
vice, TrustBase uses a combination of traffic interception
to harden certificate validation for existing applications
and a validation API to simplify authentication for new
or modified applications. TrustBase intercepts network
traffic between the socket layer and the transport layer,
where it detects the initiation of TLS connections, extracts
handshake information, validates the server’s certificate
using a variety of configurable authentication services,
and then allows or blocks the connection based on the re-
sults of this additional validation. This allows TrustBase
to harden certificate validation in an application-agnostic
fashion, irrespective of what TLS library is employed.
TrustBase also includes a simple certificate validation
API that applications call directly, which extends authen-
tication services to new or modified applications, while
also providing compatibility with TLS 1.3.

To provide system administrator control, TrustBase
provides a policy engine that enables an administrator to
choose how certificate authentication is performed on the
host, with a variety of authentication services that can be
used to harden the CA system. The checks performed by
authentication services are complementary to any exist-
ing certificate validation performed by applications. This
approach both protects against insecure applications and
transparently enables existing applications to be strength-
ened against failures of the CA system. For example, a
browser that validates the extended validation (EV) cer-
tificate of a bank is doing the best it currently can, but it is
still vulnerable to a compromised CA, allowing a man-in-
the-middle (MITM) to present fake but valid certificates.
One possible use of TrustBase is to configure the use of
notaries that check whether hosts across the Internet are
exposed to the same certificate for the bank.2

1Opportunistic TLS is TLS initiated via an optional upgrade from a
plaintext protocol.

2Keys for notaries can be pinned in advance, so they are not vulnera-
ble to the MITM.

TrustBase enables system administrators and OS ven-
dors to enforce a number of policies regarding TLS. For
example, an administrator could require revocation status
checking, disallow weak cipher suites, or mandate that
Certificate Transparency be used to protect against active
man-in-the-middle (MITM) attacks. An OS vendor could
ship TrustBase with strong default protections against
broken applications, such as enforcing best practices for
validating a certificate chain, requiring hostname valida-
tion, and pinning certificates for the most popular web
sites and applications. As TLS becomes more widespread,
TrustBase could easily be extended to provide the capa-
bility to report on the use of all applications that do not
use TLS, so that an organization could better manage or
even block insecure applications. All of these improve-
ments can be made without requiring user interaction or
configuration.

Our contributions include:

• An architecture for certificate validation that pri-
oritizes operating system centralization and sys-
tem administrator control: TrustBase offers stan-
dard certificate validation procedures and option-
ally adds additional authentication services, both
of which are enforced by the operating system and
controlled by the administrator or OS vendor. This
repairs broken validation for poorly-written appli-
cations and can strengthen the validation done by
all applications. TrustBase provides a policy engine
that enables an administrator to use policies that de-
fine how multiple authentication services cooperate,
for example using unanimous consent or threshold
voting.

• A research prototype of TrustBase: We develop a
loadable kernel module that provides general traf-
fic interception and TLS handling for Linux. This
module communicates via the Netlink API to the
policy engine residing in user space for parsing and
validation of certificates. We describe how this same
architecture can be implemented on other operat-
ing systems and give details of our current Android
and Windows versions. We provide source code and
developer documentation for our prototypes, with
licensing for both commercial and non-commercial
purposes.

• A security analysis of TrustBase: We provide a
security analysis of TrustBase, including its central-
ization, application coverage, and the hardening we
have done on the Linux implementation. We de-
scribe a threat analysis and demonstrate how Trust-
Base can thwart attacks that include a hacked CA, a
subverted local root store, and a STARTTLS down-
grade attack. We also demonstrate the ability of



TrustBase to fix applications that do not validate
hostnames or skip certificate validation altogether.

• An evaluation of TrustBase: We evaluate the Trust-
Base prototype for performance, compatibility, and
utility. (1) We show that TrustBase has negligible
performance overhead, with no measurable impact
on latency. (2) We demonstrate that TrustBase en-
forces correct certificate validation on all popular
Linux libraries and tools and on the most popular
Android applications. (3) We describe eight authen-
tication services that we have developed and report
on how simple and straightforward it was to develop
these services for TrustBase.

2 Related Work

Three systems aim to tackle similar problems as Trust-
Base.

Fahl et al. proposed a new framework for Android
applications that would help developers correctly use
TLS [18]. Their work follows a similar principle to ours—
instead of letting developers implement their own cer-
tificate validation code, validation is a service, and it
incorporates a pluggable framework for authentication
schemes. Fahl’s approach is well-suited to mobile op-
erating systems such as Android, where all applications
are written in Java, but it is difficult to extend this ap-
proach to operating systems that provide more general
programming language support.

Another Android system, MITHYS, was developed to
protect Android applications from MITM attacks [6]. It
first attempts to MITM applications that establish TLS
connections and, if successful, continues using the MITM
and provides certificate validation using a notary service
hosted in the cloud. MITHYS only works for HTTPS
traffic, adds significant delays to all TLS connections that
it protects (one to ten seconds), and only supports the
current CA system.

The most closely related system to TrustBase is
CertShim [4]. Like TrustBase, CertShim is an attempt to
immediately fix TLS problems in existing apps and also
support new authentication services. CertShim works by
utilizing the LD PRELOAD environment variable to replace
functions in dynamically-loaded security libraries with
their own wrappers for those functions. This method has
an advantage over TrustBase in that CertShim does not
need to perform double validation for cases where an
application is already performing certificate validation
correctly. Because TrustBase uses traffic interception to
enforce proper certificate validation, its checks are in addi-
tion to what applications may already do (either correctly
or incorrectly). In addition, CertShim’s wrapping of val-
idation functions means that it can more easily override

the CA system in the case where administrators want an
application to accept alternative certificates, though this
will only work with applications that CertShim supports
and that do not validate against hard-coded certificates or
keys.

TrustBase has advantages that set it apart from
CertShim in several notable ways:

(1) Coverage. TrustBase intercepts all secure traffic
and thus can independently validate certificates for all ap-
plications, regardless of what library they used, how they
were compiled, what user ran them, or how they were
spawned. CertShim does not support browsers, and it
cannot perform validation for applications in all scenarios.
For example, applications using custom or unsupported se-
curity libraries (e.g., BoringSSL, NSS, MatrixSSL, more-
recent GnuTLS, etc.), applications statically linked with
any security library, and applications spawned without
being passed CertShim’s path in the LD PRELOAD envi-
ronment variable (e.g., spawned by execv or spawned
by a user without that environment setting) will not have
their certificates validated by CertShim.

(2) Maintenance. TrustBase only needs to maintain
compatibility with the TLS specification and the signa-
tures of high-level functions of TCP in the Linux ker-
nel. As a datapoint, the latter has had only two minor
changes since Linux 2.2 (released 1999)—one change
was to add a parameter, the other was to remove it. In
contrast, CertShim relies on data structures internal to the
security libraries it supports, and libraries change their in-
ternals with surprising frequency. The current versions of
PolarSSL (now mbed TLS) and GnuTLS were no longer
compatible with CertShim, one year after its release.

(3) Administrator Control. TrustBase ensures that
only system administrators can load, unload, bypass,
or modify its functionality, so that every secure ap-
plication is subject to its configured policies. With
CertShim, guest users and applications can easily opt
out of its security policies by removing CertShim from
their LD PRELOAD environment variable, and developers
can bypass CertShim by statically-linking with security
libraries, using an unsupported TLS library, or spawning
child processes without CertShim in their environment.

(4) Local Adversary Protection. TrustBase uses a
trust model that protects against a local adversary, wherein
a nonprivileged, local, malicious application attempts to
bypass or alter certificate validation. Recent studies of
TLS MITM behavior suggest that local malware acting as
a MITM is more prevalent than remote MITM attackers
[24, 34]. TrustBase protects against this case by using
a protected Netlink protocol, privileged policy engine,
protected files, and kernel module that cannot be removed
by a nonprivileged user. CertShim’s attack model does
not address this case. In fact, malware uses the same
LD PRELOAD mechanism [28].



(5) Opportunistic TLS Enforcement. TrustBase can
enforce the use of TLS in plaintext protocols that option-
ally allow upgrades to TLS, such as STARTTLS, signifi-
cantly reducing the attack surface for downgrade attacks.
Since CertShim hooks into TLS library calls, it cannot be
invoked if no calls occur.

3 TrustBase

TrustBase is motivated by the need to fix broken authen-
tication in applications and strengthen the CA system,
using the two motivating principles that authentication
should be centralized in the operating system and system
administrators should be in control of authentication poli-
cies on their machines. In this section, we discuss the
threat model, design goals, and architecture of the system.

3.1 Threat Model
In our threat model, an active attacker attempts to imper-
sonate a remote host by providing a fake certificate. Our
attacker includes remote hosts as well as MITM attackers
located anywhere along the path to a remote host. The
goal of the attacker is to establish a secure connection
with the client.

The application under attack may accept the fake cer-
tificate for the following reasons:

• The application employs incorrect certificate valida-
tion procedures (e.g., limited or no validation) and
the attacker exploits his knowledge of this to trick
the application into accepting his fake certificate.

• The attacker or malware managed to place a rogue
certificate authority into the user’s root store (or an-
other trust store used by the application) so that he
has become a trusted certificate authority. The fake
certificate authority’s private key was then used to
generate the fake certificate used in the attack.

• Non-privileged malware has altered or hooked secu-
rity libraries the application uses to force acceptance
of fake certificates (e.g., via malicious OpenSSL
hooks and LD PRELOAD).

• A legitimate certificate authority was compromised
or coerced into issuing the fake certificate to the
attacker.

Local attackers (malware) with root privilege are out-
side the scope of our threat model. In addition, we
consider only certificates from TLS connections directly
made from the local system to a designated host, and
not those that may be present in streams higher up in the
OSI stack or indirectly from other hosts or proxies via
protocols like onion routing.

Figure 1: TrustBase architecture overview

3.2 Design Goals

The design goals for TrustBase are: (1) Secure existing
applications. TrustBase should override incorrect or ab-
sent validation of certificates received via TLS in current
applications. (2) Strengthen the CA system. TrustBase
should provide simple deployment of authentication ser-
vices that strengthen the validation provided by the CA
system. (3) Full application coverage. All incoming
certificates should be validated by TrustBase, including
those provided to both existing applications and future
applications. However, this does not include certificates
from connections not made directly by the system, such as
certificates delivered through onion routing. (4) Univer-
sal deployment. The TrustBase architecture should be
designed to work on any major operating system, includ-
ing both desktop and mobile platforms. (5) Negligible
overhead. TrustBase should have negligible performance
overhead. This includes ensuring that the user experience
for applications is not affected in any way, except when
TrustBase prevents an application from establishing an
insecure connection.

3.3 Architecture

The architecture for TrustBase is given in Figure 1. These
components are described below:

3.3.1 Traffic Interceptor

The traffic interceptor intercepts all network traffic and
delivers it to registered handlers for further processing.
The interceptor is generic, lightweight, and can provide
traffic to any type of handler. Traffic for any specific
stream is intercepted only as long as a handler is interested
in it. Otherwise, traffic is routed normally.

The traffic interceptor is needed to secure existing appli-
cations. If a developer is willing to modify her application
to call TrustBase directly for certificate validation, then
she can use the validation API. Administrators can con-



figure TrustBase to not intercept traffic from applications
using this API.

3.3.2 Handlers

Handlers are state machines that examine a traffic stream
to isolate data used for authenticating connections and
then pass this data to the policy engine. Data provided to
the policy engine includes everything from the relevant
protocol that is intercepted.3 For example, with TLS
this includes the ClientHello and ServerHello data
in addition to the server certificate chain and the server
hostname. The handler will allow or abort the connection,
based on the policy engine’s response.

TrustBase currently has both a TLS handler and an
opportunistic TLS handler (e.g., STARTTLS), and due to
the design of the traffic interceptor it is easy to add support
for new secure transport protocols as they become popular
(e.g., QUIC, DTLS).

3.3.3 Policy Engine

The policy engine is responsible for using the registered
authentication services to validate the server certificate ex-
tracted by the handler. The policy engine also aggregates
validation responses if there are multiple active authen-
tication plugins. The policy is configured by the system
administrator, with sensible operating system defaults for
ordinary users.

When the policy engine receives a validation request
from a handler, it will query each of the registered authen-
tication services to validate the server’s certificate chain
and host data. Authentication services can respond to this
query in one of four ways: valid, invalid, abstain, or error.
Abstain and error responses are mapped to the valid or
invalid responses, as defined in a configuration file.

To render a decision, the policy engine classifies plu-
gins as either “necessary” or “voting”, as defined in the
configuration file. All plugins in the “necessary” category
must indicate the certificate is valid, otherwise the policy
engine will mark the certificate as invalid. If the nec-
essary plugins validate a certificate, the responses from
the remaining “voting” plugins are tallied. If the aggre-
gation of valid votes is above a preconfigured threshold,
the certificate is deemed valid by the policy engine. A
write-protected configuration file lists the plugins to load,
assigns each plugin to an aggregation group (“necessary”
or “voting”), defines the timeout for plugins, etc.

3.3.4 Plugin API

TrustBase defines a robust plugin API that allows a vari-
ety of authentication services to be used with TrustBase.

3This enables plugins to provide authentication methods that utilize
TLS extensions and cipher suite information.

The policy engine queries each authentication service by
supplying host data and a certificate chain, and the au-
thentication service returns a response. We provide both
an asynchronous plugin API and a synchronous plugin
API to facilitate the needs of different designs.

The synchronous plugin API is intended for use by sim-
ple authentication methodologies. Plugins using this API
may optionally implement initialize and finalize

functions for any setup and cleanup they need to perform.
For example, a plugin may want to store a cache or socket
descriptor for long-term use during runtime. Each plugin
must also implement a query function, which is passed a
data object containing a query ID, hostname, IP address,
port, certificate chain, and other relevant context. The cer-
tificate chain is provided to the plugin DER encoded and
in openssl’s STACK OF(X509) format for convenience.
The query function returns the result of the plugin’s vali-
dation of the query data (valid, invalid, abstain, or error)
back to the policy engine.

The asynchronous plugin API allows for easier integra-
tion with more advanced designs, such as multithreaded
and event-driven architectures. This API supplies a call-
back function through the initialize function that plu-
gins must use to report validation decisions, using the
query ID supplied by the data supplied to query. Thus
the initialize function is required so that plugins may
obtain the callback pointer (the finalize function is
still optional). Asynchronous plugins also implement
the query function, but return a status code from this
function immediately and instead report their validation
decision using the supplied callback.

3.3.5 Validation API

The validation API provides a direct interface to the policy
engine for certificate validation. New or modified applica-
tions can use this API to simplify validation, avoid com-
mon developer mistakes, and take advantage of TrustBase
authentication services. Applications can use the API to
validate certificates or request pinning for a self-signed
certificate. The API also allows the application to receive
validation error messages from TrustBase, allowing it
to display errors directly in the application (TrustBase
displays notifications through the operating system).

3.4 Addressing Certificate Pinning

Some applications have implemented certificate pinning
to provide greater security in cases where the hosts that the
application visits are static and known, rather than using
the CA system for certificate validation. TrustBase wants
to avoid the situation where its authentication services
declare a certificate to be invalid when the application has
validated it with pinning, but should also adhere to its core



tenant that the system administrator should have ultimate
control over how certificates are validated. Our measure-
ments indicate that this circumstance is rare and affects
relatively few applications, since the problem only arises
when a certificate offered by a host does not also validate
by the CA system (e.g., a self-signed certificate). In the
short term, TrustBase solves this problem by using the
configuration file to allow whitelisting of programs that
should bypass TrustBase’s default policies. In the long
term, this problem is solved by applications migrating to
the validation API.

3.5 TLS 1.3 and Overriding the CA System

There are two situations where TrustBase cannot use de-
fault traffic interception to accomplish its primary goals.
First, when an application uses TLS 1.3, the certificates
that are exchanged are encrypted, preventing TrustBase
from using passive traffic interception to independently
validate certificates. Second, in some cases a system ad-
ministrator may want to distrust the CA system entirely
and rely solely on alternative authentication services. For
example, the administrator may want to force applications
currently using CA validation to accept self-signed certifi-
cates that have been validated using a notary system such
as Convergence[31], or she may want to use DANE[21]
with trust anchors that differ from those shipped with the
system. When this occurs, TrustBase will use the new au-
thentication service and determine the certificate is valid
and allow a connection as configured by the administra-
tor, but applications using the CA system may reject the
certificate and terminate the connection. We stress that
such a policy would not be intended to override strong
certificate checks done by a browser (e.g., when commu-
nicating with a bank), but to provide a path for migrating
away from the CA system as stronger alternatives emerge.

To handle both TLS 1.3 and overriding the CA system,
TrustBase provides two options. The preferred option is
to modify applications to rely on TrustBase for certificate
validation, rather than performing their own checks. This
is facilitated by the validation API described above. This
enables new or modified applications to use the full set of
authentication services provided by TrustBase in a natural
manner.

A second option is to employ a local TLS proxy that can
coerce existing applications that rely on the CA system
to use new authentication services instead. The use of
a proxy also allows TrustBase plaintext access to the
server’s certificate under TLS 1.3. TrustBase gives the
administrator the option of running such a proxy, but it is
activated only in those cases where it is needed, namely
when the policy engine determines a certificate is valid
but the CA system would reject it. The proxy employed
is a modified fork of sslsplit [38] and has shown itself

to be scalable and performant in our experimentation.
Note that in most cases this is not needed—for example,
under Convergence, the certificates validated by notaries
would likely also be validated by the CA system unless
the certificate was self-signed, which is a situation likely
to exist until CA alternatives gain significant traction.
Given the vulnerabilities noted recently with proxies [11]
administrators should exercise caution using this feature.
Due to the features of the Windows root store, TrustBase
on Windows can override the CA system without the use
of a local proxy, as explained in Section 6.4.

3.6 Operating System Support

We designed the TrustBase architecture so that it could
be implemented on additional operating systems. The
main component that may need to be customized for each
operating system is the traffic interception module. We
are optimistic that this is possible because the TCP/IP
networking stack and sockets are used by most operating
systems.

Our Linux implementation is described in the following
section. We also have a working prototype of TrustBase
for Windows, which uses the Windows Filtering Platform
API.

Mac OSX provides a native interface for traffic inter-
ception between the TCP and socket levels of the oper-
ating system. Apple’s Network Kernel Extensions suite
provides a “Socket Filter” API that could be used as the
traffic interceptor.

For iOS, Apple provides a Network Extension frame-
work that includes a variety of APIs for different kinds of
traffic interception. The App Proxy Provider API allows
developers to create a custom transparent proxy that cap-
tures application network data. Also available is the Filter
Data Provider API that allows examination of network
data with built-in “pass/block” functionality.

Because Android uses a variant of the Linux kernel,
we believe our Linux implementation could be ported
to Android with relative ease. We have a prototype of
TrustBase on Android that instead uses the VPNService
to intercept traffic.

4 Linux Implementation

We have designed and built a research prototype of
TrustBase for Linux. The source code is available at
owntrust.org.

We have developed a loadable kernel module (LKM)
to intercept traffic at the socket layer, as data transits be-
tween the application and TCP handling kernel code. No
modification of native kernel code is required, and the
LKM can be loaded and unloaded at runtime. Similarly to



Figure 2: Linux Traffic Interceptor simplified flowchart. Grey boxes correspond to hooks for handlers, white boxes are
native system calls and kernel functions

how Netfilter operates at the IP layer, TrustBase can inter-
cept traffic at the socket layer, before data is delivered for
TCP handling, and pass it to application-level programs,
where it can be (optionally) modified and then passed
back to the native kernel code for delivery to the original
TCP functionality. Likewise, interception can occur after
data finishes TCP processing and before it is delivered
to the application. This enables TrustBase to efficiently
intercept TLS connections in the operating system and
validate certificates in the application layer.

The following discussion highlights the salient features
of our implementation.

4.1 Traffic Interceptor
TrustBase provides generic traffic interception by captur-
ing traffic between sockets and the TCP protocol. This is
done by hooking several kernel functions and wrapping
them to add traffic interception as needed. An overview
of which functions are hooked and how they are modified
is given in Figure 2. Items in white boxes on the left side
of the figure are system calls. Items in white boxes on the
right side of the figure are the wrapped kernel functions.
The additional logic added to the native flow of the kernel
is shown by the arrows and gray boxes in Figure 2.

When the TrustBase LKM is loaded, it hooks into the
native TCP kernel functions whose pointers are stored
in the global kernel structures tcp prot (for IPv4) and
tcpv6 prot (for IPv6). When a user program invokes
a system call to create a socket, the function pointers
within the corresponding protocol structure are copied
into the newly-created kernel socket structure, allowing
different protocols (TCP, UDP, TCP over IPv6, etc.) to be

invoked by the same common socket API. The function
pointers in the protocol structures correspond to basic
socket operations such as sending and receiving data, and
creating and closing connections. Application calls to
read, write, sendmsg, and other system calls on that
socket then use those protocol functions to carry out their
operations within the kernel. Note that within the kernel,
all socket-reading system calls (read, recv, recvmsg,
and recvmmsg) eventually call the recvmsg function pro-
vided by the protocol structure. The same is true for the
corresponding socket write system calls, as each result in
calling the kernel sendmsg function. When the LKM is
unloaded, the original TCP functionality is restored in a
safe manner.

From top to bottom in Figure 2, the functionality of the
traffic interceptor is as follows. First, a call to connect in-
forms the handler that a new connection has been created,
and the handler can choose to intercept its traffic.

Second, when an application makes a system call to
send data on the socket, the interceptor checks with the
handler to determine if it is tracking that connection. If
so, it forwards the data to the handler for analysis, and
the handler chooses what data (potentially modified by
the handler), if any, to relay to native TCP-sending code.
After attempting to send data, the interceptor informs the
handler how much of that data was successfully placed
into the kernel’s send buffer and provides notification of
any errors that occurred. At this point the interceptor
allows the handler to send additional data, if desired. This
process continues until the handler indicates it no longer
wishes to send data. The interceptor then queries the
handler for the return values it wishes to report to the



application (such as how many bytes were successfully
sent or an error value) and these values are returned to the
application.

Third, a similar, reversed process is followed for the
reception of data from the network. If the interceptor is
tracking the connection it can choose whether to receive
data processed by TCP handling. Any data received is re-
ported to the handler, which can choose whether to report
a different value to the application. Note that handlers are
allowed to report arbitrary values to applications for the
amount of data sent or received, including false values,
to allow greater flexibility in connection handling, or to
maintain application integrity when injecting additional
bytes into a stream. For example, to provide more time
to obtain and parse a message, a handler may indicate
to an application that zero bytes have been received on a
nonblocking socket, even though some or all of the data
may have already been received. After the handler has
completed its operation it can report to a subsequent re-
ceive call from the application that bytes were received,
and fill the application’s provided buffer with relevant
data. As another example, if a handler wishes to append
data to a message successfully transferred to the OS by an
application using the send system call, it should enforce
that the return value of this function be the number of
bytes the application expects to have been sent, rather
than a higher number that includes the added bytes.

Finally, a call to close (on the last remaining socket
descriptor for a connection) or shutdown informs the
handler that the connection is closed. Note that the han-
dler may also choose to abandon tracking of connections
before this point.

Handlers for various network observation and modifica-
tion can be constructed by implementing a small number
of functions, which will be invoked by the traffic inter-
ceptor at runtime. These functions roughly correspond to
the grey boxes in Figure 2. For example, handlers must
implement functions to send and receive data, indicate
whether to continue or cease tracking of a connection,
etc. The traffic interceptor calls these functions to provide
the handler with data, receive data from the handler to be
forwarded to applications or remote hosts, and other tasks.
Such an architecture allows developers to implement arbi-
trary protocol handlers as simple finite state machines, as
demonstrated by the TLS handler and opportunistic TLS
handlers described in the following subsections.

Another option for implementing traffic interception
would have been to use the Netfilter framework, but this
is not an optimal approach. TrustBase relies on pars-
ing traffic at the application layer, but Netfilter intercepts
traffic at the IP layer. For TrustBase to be implemented
using Netfilter, TrustBase would need to transform IP
packets into application payloads. This could be done
either by implementing significant portions of TCP, in-

Figure 3: Simplified view of TLS handler

cluding out-of-order handling and associated buffers, or
passing traffic through the network stack twice, once to
parse the IP packets for TrustBase and once for forward-
ing the traffic to the application. Both of these options
are problematic, creating development and performance
overhead, respectively.

4.2 TLS Handler
TrustBase includes a handler for the traffic interceptor
dubbed the “TLS handler”. The TLS handler extracts
certificates from TLS network flows and forwards them
to the policy engine for validation.

Figure 3 provides a high-level overview of how this
handler operates. When a new socket is created, the
handler creates state to track the connection, which the
handler will have access to for all subsequent interactions
with the interceptor. The destination IP address and port
of the connection and PID of the application owning the
connection are provided to the handler during connection
establishment by the interceptor. Since the handler is
implemented in a LKM, the PID of the socket can be used
to obtain any further information about the application
such as the command used to run it, its location, and even
memory contents.

When data is sent on the socket, the handler checks
state data to determine whether the connection has initi-
ated a TLS handshake. If so, then it expects to receive
a ClientHello; the handler saves this message for the
policy engine so that it can obtain the hostname of the
desired remote host, if the message contains a Server
Name Indication (SNI) extension. If SNI is not used, a
log of applications’ DNS lookups can be used to infer the
intended host,4 similar to work by Bates et al. [4]

When data is received on the socket, the TLS handler
waits until it has received the full certificate chain, then

4Our experimentation showed that all popular TLS implementations
and libraries now use SNI, and Akamai reports HTTPS SNI global usage
at over 98% [33], so this fallback mechanism is almost never needed.



it sends this chain and other data to the policy engine for
parsing and validation.

Note, the TLS handler understands the TLS record and
handshake protocols but does not perform interpretations
of contained data. This minimizes additions to kernel-
level code and allows ASN.1 and other parsing to be done
in userspace by the policy engine.

4.3 Opportunistic TLS Handler

We have also implemented an opportunistic TLS handler,
which provides TrustBase support for plaintext protocols
that may choose to upgrade to TLS opportunistically, such
as STARTTLS. This handler performs passive monitor-
ing of plaintext protocols (e.g., SMTP), allowing network
data to be fast-tracked to and from the application and
does not store or aggressively process any transiting data.
If at some point the application requests to initiate a TLS
connection with the server (e.g., via a STARTTLS mes-
sage), the handler processes acknowledgments from the
server and then delivers control of the connection to the
normal TLS handler, which is free to handle the connec-
tion as if it were conducting regular TLS.

It should be noted that the use of opportunistic TLS
protocols by applications is subject to active attackers
who perform stripping attacks to make the client believe
the server does not support TLS upgrades, an existing
vulnerability well documented by recent work [9, 19, 22].
TrustBase can prevent this type of attack, as discussed in
Section 5.

4.4 Policy Engine

The policy engine receives raw certificate data from the
TLS handler and then validates the certificates using the
configured authentication services. To avoid vulnerabili-
ties that may arise from performing parsing and modifi-
cation of certificates in the kernel, all such operations are
carried out in user space by the policy engine.

Communication between TrustBase kernel space and
user space components is conducted via Netlink, a robust
and efficient method of transferring data between kernel
and user space, provided natively by the Linux kernel.
The policy engine asynchronously handles requests from
the kernel module, freeing up the kernel threads to handle
other connections while a response is constructed.

Native plugins must be written in either C or C++ and
compiled as a shared object for use by the policy engine.
However, in addition to the plugin API, TrustBase sup-
ports an addon API that allows plugins to be written in
additional languages. Addons provide the code needed to
interface between the native C of the policy engine and
the target language it supports. We have implemented an

addon to support the Python language and have created
several Python plugins.

5 Security Analysis

The TrustBase architecture, prototype implementation,
and sample plugins have many implications for system
security. In this section we provide a security analysis
of the centralized system design, application coverage,
protection of applications from attackers, and protection
of TrustBase itself from attackers.

5.1 Centralization
Concentrating certificate validation in an operating system
service has some risks and benefits. Any vulnerability
in the service has the potential to impact all applications
on the system. An exploit that grants an attacker root
permission leads to compromise of the host. An exploit
that causes a certificate to be rejected when it should be
accepted is a type of denial-of-service attack. We note
that if an attacker is able to get TrustBase to accept a
certificate when it should not, any application that does its
own certificate authentication correctly will be unaffected.
If the application is broken, the TrustBase failure will not
make the situation any worse than it already was. The net
effect is a lost opportunity to make it better.

The risks of centralization are common to any operating
system service. However, centralization also has a com-
pelling upside. For instance, all of our collective effort
can be centered on making the design and implementa-
tion correct, and all applications can benefit.5 Securing a
single service is more scalable than requiring developers
to secure each application or library independently. It
also enforces an administrator’s preferences regardless of
application behavior. Additionally, when a protocol flaw
is discovered, it can be more rapidly tested and patched,
compared to having to patch a large number of applica-
tions.

5.2 Coverage
Since one of the goals of TrustBase is to enforce proper
certificate validation on all applications on a system, the
traffic interceptor is designed to stand between the trans-
port and application layers of the OS so that it can in-
tercept and access all TLS flows from local applications.
The handlers associated with the traffic interception com-
ponent are made aware of a connection when a connect
call is issued and can associate that connection with all
data flowing through it. Applications that utilize their own

5All applications would likewise benefit from caching among au-
thentication services.



custom TCP/IP stack must utilize raw sockets, which re-
quire administrator privileges and are therefore implicitly
trusted by TrustBase.

To obtain complete coverage of TLS, our handlers need
only monitor initial TLS handshakes (standard TLS) and
the brief data preceding them (STARTTLS). The charac-
teristics of TLS renegotiation and session termination are
compatible with our approach.

In TLS renegotiation, subsequent handshakes use key
material derived using the master secret of the first hand-
shake. Thus if the policy engine correctly authenticates
and validates the first handshake, TLS renegotiations are
implicitly verified as well. Attackers who obtained suf-
ficient secrets to trigger a renegotiation, through some
other attack on the TLS protocol or implementation (out-
side our threat model), have no need to take advantage
of renegotiation as they have complete control over the
connection already. We also note that renegotiation is rare
and typically used for client authentication for an already
authenticated server, and has become less relevant for
SGC or refreshing keys [37].

Session termination policies for TLS allow us to asso-
ciate each TLS session with only one TCP connection.
In TLS, a close notify must be immediately succeeded
by a responding close notification and a close down of
the connection [8]. Subsequent reconnects to the target
host for additional TLS communication are detected by
the TrustBase traffic interceptor and presented to the han-
dlers. We have found that TLS libraries and applications
do indeed terminate a TCP session when ending a TLS
session, although many of them fail to send an explicit
TLS close notification and rely solely on TCP termination
to notify the remote host of the session termination.

5.3 Threat Analysis
The coverage of TrustBase enables it to enforce both
proper and additional certificate validation procedures on
TLS-using applications. There are a variety of ways that
attackers may try perform a TLS MITM against these
applications. A selection of these methods and discussion
of how TrustBase can protect against them follows. For
each, we verified our solution utilizing an “attacker” ma-
chine acting as a MITM using sslsplit [38], and a target
“victim” machine running TrustBase. For some scenarios,
the victim machine was implanted with our own CA in
the distribution’s shipped trust store or the store of a local
user or application. Applications tested utilize the tools
and libraries mentioned in section 6.2.

• Hacked or coerced certificate authorities: Attack-
ers who have received a valid certificate through
coercion, deception, or compromise of CAs are able
to subvert even proper CA validation. Under Trust-
Base, administrators can choose to deploy pinning

or notary plugins, which can detect the mismatch
between the original and forged certificate, prevent-
ing the attacker from initiating a connection. We
have developed plugins that perform these actions
and verified that they prevent such attacks.

• Local malicious root: Attackers utilizing certifi-
cates that have been installed into an application or
user trusted store will be trusted by many target appli-
cations. Even Google Chrome will ignore certificate
pins in the presence of a certificate that links back
to a locally-installed root certificate. TrustBase can
protect against this by utilizing similar plugins to the
preceding scenario.

• Absence of status checking: Many applications
still do not check OCSP or Certificate Revoca-
tion Lists to determine if a received certificate is
valid [29]. In these cases, attackers utilizing stolen
certificates that have been reported can still perform
a MITM. Administrators who want to prevent this
from happening can add an OCSP or CRL plugin to
the policy engine and ensure these checks for all ap-
plications on the machine. We have developed both
OCSP and CRLSet plugins and verified that they per-
form status checks where applicable. For example,
the OSCP plugin can be used to check certificates
received by the Chrome browser, which does not do
this natively.

• Failure to validate hostnames: Some applications
properly validate signatures from a certificate back
to a trusted root but do not verify that the hostname
matches the one contained in the leaf certificate. This
allows attackers to utilize any valid certificate, in-
cluding those for hosts they legitimately control, to
intercept traffic [20]. The TrustBase policy engine
strictly validates the common name and all alternate
names in a valid certificate against the intended host-
name of the target host to eliminate this problem.

• Lack of validation: For applications that blindly
accept all certificates, attackers need only send a self-
signed certificate they generate on their own, or any
other for which they have the private key, to MITM
a connection. TrustBase prohibits this by default,
as the policy engine ensures the certificate has a
proper chain of signatures back to a trust anchor on
the machine and performs the hostname validation
described previously.

• STARTTLS downgrade attack: Opportunistic
TLS begins with a plaintext connection. A down-
grade attack occurs when an active attacker sup-
presses STARTTLS-related messages, tricking the
endpoints into thinking one or the other does not



support STARTTLS. The net result is a continuation
of the plaintext connection and possible sending of
sensitive data (e.g., email) in the clear. TrustBase
mitigates this attack by an option to enforce START-
TLS use. When STARTTLS is used to communicate
with a given service, TrustBase records the host in-
formation. Future connections to that host are then
required to upgrade via STARTTLS. If the host omits
STARTTLS and prohibits its use, the connection is
severed by TrustBase to prevent leaking sensitive
information to a potential attacker.6 TrustBase also
allows the system administrator to configure a strict
TLS policy, which disallows plaintext connections
even if it has no prior data about whether a remote
host supports STARTTLS.

5.4 Hardening

The following design principles strengthen the security of
a TrustBase implementation. First, the traffic interceptor
and handler components run in kernel space. Their small
code size and limited functionality—handlers are simple
finite state machines—make it more likely that formal
methods and source code auditing will provide greater
assurance that an implementation is correct. Second, the
policy engine and plugins run in user space. This is where
error-prone tasks such as certificate parsing and validation
occur. The use of privilege separation [36] and sandbox-
ing [30] techniques can limit the potential harm when
any of these components is compromised. Third, plugins
can only be installed and configured by an administra-
tor, which prohibits unprivileged adversaries and malware
from installing malicious authentication services. Finally,
communications between the handlers, policy engine, and
plugins are authenticated to prevent local malware from
spoofing a certificate validation result.

TrustBase is designed to prevent a local, nonprivileged
user from inadvertently or intentionally compromising
the system. (1) Only privileged users can insert and re-
move the TrustBase kernel module, prohibiting an at-
tacker from simply removing the module to bypass it.
The same is true for plugins. (2) The communication
between the kernel module component of TrustBase and
the user space policy engine is performed via a custom
Generic Netlink protocol that protects against nonprivi-
leged users sending messages to the kernel. The protocol
definition takes advantage of the Generic Netlink flag
GENL ADMIN PERM, which enforces that selected opera-
tions associated with the custom protocol can only be
invoked by processes that have administrative privileges

6This could be further strengthened by checking DANE records to
determine if the server supports STARTTLS. We are likewise interested
in pursuing whether this technique can be used to protect against other
types of downgrade attacks.

for networking (the capability mapped to CAP NET ADMIN

in Linux systems). This prevents a local attacker from
using a local netlink-utilizing process to masquerade as
the policy engine to the kernel. (3) The policy engine
runs as a nonroot, CAP NET ADMIN process that can be
invoked only by a privileged user. (4) The configura-
tion files, plugin directories, and binaries for TrustBase
are write-protected to prevent unauthorized modifications
from nonprivileged users. This protects against weaken-
ing of the configuration, disabling of plugins, shutting
down or replacing the policy engine, or enabling of bogus
plugins.

TrustBase stops traffic interception for a given flow
as soon as it is identified as a non-TLS connection. Ex-
perimental results show that TrustBase has negligible
overhead with respect to memory and time while tracking
connections. Thus it is unlikely that an attacker could
perform a denial-of-service attack on the machine by cre-
ating multiple network connections, TLS or otherwise,
any easier than in the non-TrustBase scenario. Such an
attack is more closely associated with firewall policies.

An attacker may seek to compromise TrustBase by
crafting an artificial TLS handshake that results in some
type of TrustBase failure, hoping to cause some kind of
application error or termination. We reduce this attack
surface by performing no parsing in the kernel except for
TLS handshake records, which involves just the message
type, length, and version headers. ASN.1 and other data
sent to the policy engine are evaluated and parsed by stan-
dard openssl functions, which have undergone widespread
scrutiny and use for many years. The TrustBase code has
been made publicly available, and we invite others to au-
dit the code. We note that, in the absence of the local
proxy, TrustBase will not coerce an application to accept
a certificate that the application would normally reject.

6 Evaluation

We evaluated the prototype of TrustBase to measure its
performance, ensure compatibility with applications, and
test its utility for deploying authentication services that
can harden certificate validation.

6.1 Performance
To measure the overhead incurred by TrustBase, we instru-
mented our implementation to record the time required to
establish a TCP connection, establish a TLS connection,
and transfer a file of varying size (2MB - 500 GB). We
tested TrustBase with two plugins, CA Validation and
Certificate Pinning (see Section 6.5). The target host for
these connections was a computer on the same local net-
work as the client machine, to reduce the effect of latency
and network noise. The host presented a valid certificate



Figure 4: Handshake Timings for TCP (left) and TLS
(right) handshakes with and without TrustBase running.

chain that also employed an intermediate authority, rep-
resenting a realistic circumstance for web browsing and
forcing plugins to execute all of their validity checks. Our
testing used a modern PC running Fedora 21 and averaged
across 1,000 trials.

Figure 4 shows boxplots that characterize the timing
of TCP and TLS handshakes, with and without Trust-
Base active. There is no discernible difference for TCP
handshake timings and the average difference is less than
10 microseconds, with neither configuration consistently
beating the other in subsequent experiments. This is
expected behavior because the traffic interceptor is ex-
tremely light-weight for TCP connections. Average TLS
handshake times with and without TrustBase also have
no discernible difference, with average handshake times
for this experiment of 5.9 ms and 6.0 ms, respectively.
Successive experiments showed again that neither average
consistently beat the other. This means that the inherent
fluctuations in system and network conditions account
for more time than the additional control paths TrustBase
introduces. This is also expected, as the brevity of TLS
handling code, its place in the kernel, the use of efficient
Netlink transport and other design choices were made
with performance in mind.

Our experimentation with varying file sizes also exhib-
ited no difference between native and TrustBase cases.
Note that the TrustBase timings for the TLS handshake
may increase if a particular plugin is installed that requires
more processing time or relies on Internet queries to func-
tion, and that this overhead is inherent to that service and
not the TrustBase core.

The memory footprint in our Linux prototype is also
negligible. For each network connection, TrustBase tem-
porarily stores less than 300 bytes of data, plus the length
of any TLS handshake messages encountered. Connec-
tions not using TLS use even less memory than this and

carry a zero-byte memory overhead once their nature has
been determined and TrustBase ceases to monitor them.

6.2 Compatibility
One goal of TrustBase is to strengthen certificate authenti-
cation for existing, unmodified applications and to provide
additional authentication services that strengthen the CA
system. To meet this goal, TrustBase must be able to
enforce proper authentication behavior by applications,
as defined by the system administrator’s configuration.

There are three possible cases for the policy engine
to consider. (1) If a certificate has been deemed valid
by both TrustBase and the application, the policy engine
allows the original certificate data to be forwarded on to
the application, where it is accepted naturally. (2) In the
case where the application wishes to block a connection,
regardless of the decision by TrustBase, the policy engine
allows this to occur, since the application may have a valid
reason to do so. We discuss in Section 3.5, the special
case when a new authentication service is deployed that
wishes to accept a certificate that the CA system normally
would not. (3) In the case where validation with TrustBase
fails, but the application would have allowed the connec-
tion to proceed, the policy engine blocks the connection
by forwarding an intentionally invalid certificate to the
application, which triggers any SSL application valida-
tion errors an application supports, and then subsequently
terminates the connection.

We tested TrustBase with 34 popular applications and
libraries and tools, shown in Table 1.7 TrustBase success-
fully intercepted and validated certificates for all of them.
For each library tested, and where applicable, we created
sample applications that performed no validation and im-
proper validation (bad checking of signatures, hostnames,
and validity dates). We then verified that TrustBase cor-
rectly forced these applications to reject false certificates
despite those vulnerabilities in each case. In addition, we
observed that TrustBase caused no adverse behavior, such
as timeouts, crashes, or unexpected errors.

6.3 Android Prototype
To verify that the TrustBase approach works on mobile
platforms and is compatible with mobile applications, we
built a prototype for Android. Source code can be found
at owntrust.org.

Our Android implementation uses the VPNService so
that it can be installed on an unaltered OS and without
root permissions. The drawback of this choice is that only
one VPN service can be active on the Android at a time.
In the long-term, adding socket-level interception to the
Android kernel would be the right architectural choice,

7These are a superset of the tools and libraries tested with CertShim



Library Tool

C++ gnutls-cli
libcurl curl
libgnutls sslscan
libssl openssl s client
libnss openssl s time

JAVA lynx
SSLSocketFactory fetchmail

PERL firefox
socket::ssl chrome/chromium

PHP mpop
fsockopen w3m
php curl ncat

PYTHON wget
httplib steam
httplib2 thunderbird
pycurl kmail
pyOpenSSL pidgin
python ssl
urllib, urllib2, urllib3
requests

Table 1: Common Linux libraries and tools compatible
with TrustBase

and then TrustBase could use similar traffic interception
techniques as with the Linux implementation.

The primary engineering consequence of using the
VPNService on Android is that TrustBase must inter-
cept IP packets from applications but emit TCP (or UDP)
packets to the network. If it could use raw sockets, then
TrustBase could merely transfer IP packets between the
VPNService and the remote server. Unfortunately, the
lowest level socket endpoint an Android developer can
create is the Java Socket or DatagramSocket, which
encapsulate TCP and UDP payloads respectively. There-
fore, we must emulate IP, UDP and TCP to facilitate
communication between the VPNService and the sock-
ets used to communicate with remote hosts. For TCP, this
involves maintaining connection state, emulating reliabil-
ity, and setting appropriate flags (SYN, ACK, etc.) for
TCP traffic.

To verify compatibility with mobile applications, we
tested 16 of the most popular Android applications:
Chrome, YouTube, Pandora, Gmail, Pinterest, Instagram,
Facebook, Google Play Store, Twitter, Snapchat, Amazon
Shopping, Kik, Netflix, Google Photos, Opera, and Dol-
phin. TrustBase on Android successfully intercepted and
strengthened certificate validation for all of them.

6.4 Windows Prototype

To demonstrate that the TrustBase approach works on
Windows, we also built a prototype for Windows 10.
Source code can be found at owntrust.org.

The traffic interceptor component of TrustBase on Win-

dows is implemented utilizing the native Windows Filter-
ing Platform (WFP) API, acting as a kernel-mode driver.
Reliance on the WFP reduced the code necessary to pro-
vide traffic interception capabilities and also made them
easy to maintain, given that the Windows kernel code is
not open source. As on Linux, this kernel code is event-
driven, collects connection information, and transmits it
to a userspace policy engine for processing and decision
making. The policy engine is patterned after its Linux
counterpart, supports both Python and C plugins, and uses
native Windows libraries where possible (e.g., Microsoft’s
CryptoAPI and native threading APIs).

The nature of the Windows root certificate store allows
TrustBase to avoid utilizing a TLS Proxy in cases where
overriding the CA system is desired (see Section 3.5).
Windows has the ability to dynamically alter the root cer-
tificate store during runtime, and applications using the
CA system will be immediately subject to those changes.
This allows TrustBase to dynamically add self-signed cer-
tificates to the root store when the policy engine deems
them trustworthy. Through this mechanism TrustBase
can override the CA system by placing a validated certifi-
cate in the root store before the application obtains and
validates it against the root store. TrustBase maintains
identifying hashes of all the certificates added to the root
store and removes them when the connections using them
are terminated. As on Linux, applications that use their
own private certificate stores cannot have their validation
rejections overridden using this methodology.

6.5 Utility

To validate the utility of TrustBase, we implemented eight
useful authentication services. Table 2 describes each
of these services. These services illustrate the types of
control that TrustBase can provide to an administrator in
securing TLS on a system. The CA validation plugin en-
sures that all applications on the system perform appropri-
ate checks when validating certificates received through
TLS (hostname, basic constraints, expiration, etc.). The
whitelist represents a more manual, customized approach
to validation, likely to be used in conjunction with other
services to handle edge cases. Our certificate pinning
and certificate revocation services enforce more advanced
checks that are usually reserved for individual applica-
tions but can now be deployed system-wide. Note that
this includes the deployment of Google’s CRLSets checks,
which are normally reserved for Chromium browsers only.
This addresses the limitation noted by [11] concerning
the isolation of newer validation technologies in browser
code. The Notary and DANE services can be leveraged
to trust additional channels of information aside from
CA signatures and revocation lists. Finally, our cipher
suite auditor service allows system administrators to pre-



CA Validation Enforces standard certificate validation using openssl functions and standard practices
for validating hostnames, Basic Constraints, dates, etc.

Whitelist Stores a set of certificates that are always considered valid for their respective hosts, such
as self-signed certificates.

Certificate Pinning Uses Trust On First Use to pin certificates for any host; expired certificates are replaced
by the next certificate received by a connection to that domain.

Certificate Revocation Checks OCSP to determine whether the certificate has been revoked.

CRLSet Blocking Checks Google’s CRLSet to determine whether the certificate has been blocked, extending
Chrome’s protection to all apps.

DANE Uses the DNS system to distribute public keys in a TLSA record [21].

Notary Based on ideas presented by Perspectives [41] and Convergence [31], it connects securely
to one or more notary servers to validate the certificate received by the client is the same
one that is seen by the notaries.

Cipher Suite Auditor Uses Client Hello and Server Hello information, along with a configuration with secure
defaults, to disallow weak cipher suites. It can also require that certain TLS extensions be
employed (e.g., TACK[32]).

Table 2: Authentication and Security services implemented with TrustBase

vent connections that attempt to utilize weak cipher suites
and signing algorithms, using the additional handshake
information provided to all plugins.

7 Future Work

TrustBase explores the benefits and drawbacks of pro-
viding authentication as an operating system service and
giving administrators control over how all authentication
decisions on their machines are made. In doing so, a
step has been taken toward empowering administrators to
control secure connections on their machines. However,
some drawbacks have been noted, such as the reliance
on a local proxy to support TLS 1.3 interception and
CA overriding in some cases on Linux. These issues
are caused by applications dictating the security of the
machine’s connections, using their own (or third party)
security features and keys, reducing operating system and
administrator control.

We are currently investigating further steps into this
territory to provide great administrator control of security
without some of these drawbacks. One such step is pro-
viding TLS as an operating system service, meaning that
the operating system provides encryption for applications,
not just authentication. Current TLS libraries are a burden
on application developers, who are often not security ex-
perts. In addition, developers do not necessarily share the
same security goals as the vendors or administrators who
configure the systems upon which applications run. By
providing TLS as an operating system service, application
developers are relieved of this burden and the OS can in-

voke the TrustBase validation API natively. This removes
the need for developers to explicitly invoke the validation
API, and provides the OS with visibility and control over
all TLS data, including TLS 1.3 handshakes, as the OS
becomes the de facto TLS client. Such a measure enables
system-wide deployment of security measures, such as
cipher suite customization, TLS extension deployment,
and responses to CVEs. This also allows OS vendors
and system administrators an easier upgrade path for TLS
versions.

Since network application developers are already fa-
miliar with the POSIX socket API, we are working on
providing TLS as a protocol type in the socket API, the
same way the OS provides TCP and UDP protocols as
a service. In contrast to using a userspace library, this
approach allows network application developers unfamil-
iar with security to operate in a well-known environment,
utilizes an existing OS API that can be shared by many
different platform implementations, and allows strict con-
figuration and control by administrators. By creating a
socket using a new IPPROTO TLS parameter (as opposed
to IPPROTO TCP), developers can use the bind, connect,
send, recv, and other socket API calls with which thy
are already familiar, focusing solely on application data
and letting the OS handle all TLS functionality. The gen-
eralized setsockopt and getsockopt are available to
specify remote hostnames and additional options to the
OS TLS service without violating the existing socket API.



8 Conclusion

We have explored how to fix broken authentication in ex-
isting applications, while also providing a platform for im-
proved authentication services. To solve these problems
we used two guiding principles—centralizing authenti-
cation as an operating system service and giving system
administrators control over authentication policy. Fol-
lowing these two principles, we designed the TrustBase
architecture for certificate authentication, meeting our
design goals of securing existing applications, strengthen-
ing the CA system, providing full application coverage,
enabling universal deployment, and imposing negligible
overhead. We have presented a research prototype for
TrustBase on Linux, discussed how we hardened this
implementation, provided a security analysis, and evalu-
ated its performance. We have provided source code for
Linux, Android, and Windows prototypes. Finally, we
have written eight authentication services to demonstrate
the utility of this approach, extending CA hardening to
all applications.

9 Acknowledgments

The authors thank the anonymous reviewers for their help-
ful feedback. This material is based upon work supported
by the National Science Foundation under Grant No.
CNS-1528022 and research sponsored by the Department
of Homeland Security (DHS) Science and Technology
Directorate, Cyber Security Division (DHS S&T/CSD)
via contract number HHSP233201600046C. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of the Department of Homeland Security. Also,
this work was supported by Sandia National Laborato-
ries, a multimission laboratory managed and operated
by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract
DE-NA-0003525.

References
[1] ALICHERRY, M., AND KEROMYTIS, A. D. Doublecheck: Multi-

path verification against man-in-the-middle attacks. In 14th IEEE
Symposium on Computers and Communications (ISCC) (2009),
IEEE, pp. 557–563.

[2] AMANN, B., VALLENTIN, M., HALL, S., AND SOMMER, R.
Extracting certificates from live traffic: A near real-time SSL
notary service. Tech. rep., TR-12-014, ICSI Nov. 2012, 2012.

[3] AMANN, B., VALLENTIN, M., HALL, S., AND SOMMER, R.
Revisiting SSL: A large-scale study of the internet’s most trusted
protocol. Tech. rep., TR-12-015, ICSI Dec. 2012, 2012.

[4] BATES, A., PLETCHER, J., NICHOLS, T., HOLLEMBAEK, B.,
TIAN, D., BUTLER, K. R., AND ALKHELAIFI, A. Securing
SSL certificate verification through dynamic linking. In ACM
Conference on Computer and Communications Security (2014).

[5] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND
SHMATIKOV, V. Using frankencerts for automated adversarial
testing of certificate validation in SSL/TLS implementations. In
IEEE Symposium on Security and Privacy (SP) (2014).

[6] CONTI, M., DRAGONI, N., AND GOTTARDO, S. MITHYS: Mind
the hand you shake-protecting mobile devices from SSL usage
vulnerabilities. In Security and Trust Management. Springer, 2013,
pp. 65–81.

[7] DE CARNAVALET, X. D. C., AND MANNAN, M. Killed by proxy:
Analyzing client-end TLS interception software. In Network and
Distributed System Security Symposium (2016).

[8] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard),
August 2008.

[9] DURUMERIC, Z., ADRIAN, D., MIRIAN, A., KASTEN, J.,
BURSZTEIN, E., LIDZBORSKI, N., THOMAS, K., ERANTI, V.,
BAILEY, M., AND HALDERMAN, J. A. Neither snow nor rain
nor MITM. . . : An empirical analysis of email delivery security.
In Fifteenth ACM Internet Measurement Conference (IMC 2015)
(Tokyo, Japan, 2015), ACM, pp. 27–39.

[10] DURUMERIC, Z., KASTEN, J., BAILEY, M., AND HALDERMAN,
J. A. Analysis of the HTTPS certificate ecosystem. In Internet
Measurement Conference (2013).

[11] DURUMERIC, Z., MA, Z., SPRINGALL, D., BARNES, R., SUL-
LIVAN, N., BURSZTEIN, E., BAILEY, M., HALDERMAN, J. A.,
AND PAXSON, V. The security impact of HTTPS interception. In
Network and Distributed Systems Symposium (2017).

[12] ECKERSLEY, P., AND BURNS, J. An observatory for the SSLi-
verse. http://www.eff.org/files/DefconSSLiverse.pdf,
2010.

[13] ECKERSLEY, P., AND BURNS, J. The (decentralized) SSL obser-
vatory. In USENIX Security Symposium (2011).

[14] (EFF), E. F. F. The Sovereign Keys Project. http:

/www.eff.org/sovereign-keys/, 2011.

[15] ENGERT, K. MECAI - mutually endorsing CA infrastructure.
http://kuix.de/mecai. Accessed: March 2013.

[16] EVANS, C., AND PALMER, C. Certificate pinning extension
for HSTS. http://tools.ietf.org/html/draft-evans-
palmer-hsts-pinning-00. Accessed: 22 March, 2013.

[17] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L.,
FREISLEBEN, B., AND SMITH, M. Why Eve and Mallory love
Android: An analysis of Android SSL (in) security. In ACM
Conference on Computer and Communications Security (2012).

[18] FAHL, S., HARBACH, M., PERL, H., KOETTER, M., AND
SMITH, M. Rethinking SSL development in an appified world.
In ACM Conference on Computer & Communications Security
(2013).

[19] FOSTER, I. D., LARSON, J., MASICH, M., SNOEREN, A. C.,
SAVAGE, S., AND LEVCHENKO, K. Security by any other name:
On the effectiveness of provider based email security. In Twenty-
Second ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS 2015) (Denver, CO, 2015), ACM, pp. 450–
464.

[20] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R., BONEH,
D., AND SHMATIKOV, V. The most dangerous code in the world:
validating SSL certificates in non-browser software. In ACM
Conference on Computer and Communications Security (2012).



[21] HOFFMAN, P., AND SCHLYTER, J. The DNS-based authentica-
tion of named entities (DANE) transport layer security (TLS) pro-
tocol: TLSA, RFC 6698. https://datatracker.ietf.org/
doc/rfc6698, 2012. Accessed: 24 Feb, 2014.

[22] HOLZ, R., AMANN, J., MEHANI, O., WACHS, M., AND KAA-
FAR, M. A. TLS in the wild: An internet-wide analysis of TLS-
based protocols for electronic communication. In Twenty-Fourth
Network and Distributed System Security Symposium (NDSS 2016)
(San Diego, CA, 2016), The Internet Society.

[23] HOLZ, R., RIEDMAIER, T., KAMMENHUBER, N., AND CARLE,
G. X.509 forensics: Detecting and localising the SSL/TLS men-
in-the-middle. In 17th European Symposium on Research in Com-
puter Security (ESORICS). Springer, 2012, pp. 217–234.

[24] HUANG, L.-S., RICE, A., ELLINGSEN, E., AND JACKSON, C.
Analyzing forged SSL certificates in the wild. In IEEE Symposium
on Security and Privacy (2014).

[25] KEIZER, G. Hackers spied on 300,000 Iranians using fake Google
certificate. http://www.computerworld.com/article/
2510951/cybercrime-hacking/hackers-spied-on-300-

000-iranians-using-fake-google-certificate.html.
Accessed: 27 October, 2015.

[26] KIM, T. H.-J., HUANG, L.-S., PERRING, A., JACKSON, C., AND
GLIGOR, V. Accountable key infrastructure (AKI): A proposal for
a public-key validation infrastructure. In International Conference
on World Wide Web (2013).

[27] LAURIE, B., LANGLEY, A., AND KASPER, E. Certificate
transparency, IETF RFC 6962. http://tools.ietf.org/html/
rfc6962, Jun 2013.

[28] LIGH, M. H., CASE, A., LEVY, J., AND WALTERS, A. The art
of memory forensics: detecting malware and threats in windows,
linux, and Mac memory. John Wiley & Sons, 2014.

[29] LIU, Y., TOME, W., ZHANG, L., CHOFFNES, D., LEVIN, D.,
MAGGS, B., MISLOVE, A., SCHULMAN, A., AND WILSON, C.
An end-to-end measurement of certificate revocation in the web’s
PKI. In ACM Conference on Internet Measurement (2015).

[30] MAASS, M., SALES, A., CHUNG, B., AND SUNSHINE, J. A
systematic analysis of the science of sandboxing. PeerJ Computer
Science 2 (2016), e43.

[31] MARLINSPIKE, M. SSL and the future of authenticity. Black Hat
USA (2011).

[32] MARLINSPIKE, M., AND PERRIN, T. Trust assertions for certifi-
cate keys. http://tack.io/, 2013.

[33] NYGREN, E. Reaching toward universal TLS SNI.
https://blogs.akamai.com/2017/03/reaching-toward-
universal-tls-sni.html. Accessed: 21 June, 2017.

[34] O’NEILL, M., RUOTI, S., SEAMONS, K., AND ZAPPALA, D.
TLS proxies: Friend or foe? In ACM Internet Measurement
Conference (2016).

[35] ONWUZURIKE, L., AND DE CRISTOFARO, E. Danger is my
middle name: experimenting with ssl vulnerabilities in android
apps. In ACM Conference on Security & Privacy in Wireless and
Mobile Networks (2015).

[36] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing
privilege escalation. In USENIX Security (2003), vol. 3.

[37] RISTIĆ, I. Bulletproof ssl and tls. Feisty Duck (2014).

[38] ROETHLISBERGER, D. Sslsplit. https://www.roe.ch/
SSLsplit. Accessed: 11 July, 2015.

[39] RYAN, M. D. Enhanced certificate transparency and end-to-end
encrypted mail. In Network and Distributed System Security
Symposium (NDSS) (2014), Internet Society.

[40] SOGHOIAN, C., AND STAMM, S. Certified lies: Detecting and de-
feating government interception attacks against SSL (short paper).
In Financial Cryptography and Data Security. Springer, 2012,
pp. 250–259.

[41] WENDLANDT, D., ANDERSEN, D. G., AND PERRIG, A. Per-
spectives: Improving SSH-style host authentication with multi-
path probing. In USENIX Annual Technical Conference (2008),
pp. 321–334.


