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Abstract

Many researchers have explored enhancements of the Internet's best-e�ort service model
that allow real-time and other inelastic applications to obtain preferential Quality of Service.
However, these applications are limited to utilizing the opportunistic, shortest-path routes pro-
vided by the current routing infrastructure. To better support real-time applications, this paper
introduces extensions to interdomain multicast routing to scalably compute and install alternate
paths and non-opportunistic, or pinned, routes. We present a simple multicast setup protocol
for installing alternate paths and discuss how it prevents loops. Furthermore, we include the
results of a simulation study to demonstrate the viability of using localized route construction
to �nd adequate alternate paths.

1 Introduction

The Internet has been extremely successful supporting elastic applications with best-e�ort service
[Cla88]. However, best e�ort service can result in large and widely varying end-to-end packet
delays if the links and routers traversed are heavily loaded. To better support real-time and other
inelastic applications for which such vagaries are detrimental, the research community has proposed
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extensions to the Internet's service model and architecture. These extensions would allow 
ows or

ow aggregates to obtain preferential qualities of service (QoS) by marking packets or by using a
\resource reservation" protocol.

While much research has been devoted to the development of admission control, scheduling, and
queueing mechanisms, relatively little attention has been paid to upgrading the routing infrastruc-
ture of the Internet to support these extensions. Previous work [Bre95, EZL+96] addressed some
aspects of the problem for unicast routing. This paper is concerned with addressing the additional
complexities that arise when considering multicast routing support for integrated services networks.
Furthermore, we focus on interdomain routing, for which issues of scaling are more acute than for
the intradomain case.

The routing infrastructure of the Internet has been designed primarily to support best-e�ort
service. Current routing protocols [Hed88, Mil84, Hed89, IDR93, RL94, Moy94b] use opportunistic
shortest-path routing for all applications. By opportunistic we mean that routing always utilizes
the current shortest path, even if the previous shortest path is still functioning. By shortest path

we mean that routing uses a single \cost" metric (often just hop-count) and then chooses the
\least-cost" path.

In this paper, we focus on two particular problems that face real-time (or other performance-
sensitive) applications that operate over current routing protocols:

� Failed primary path problem: Because current routing protocols use a single path, an appli-
cation has no alternative route to try if it does not receive acceptable service along this path.
This may happen, for example, if a 
ow does not achieve acceptable delay along an unreserved
path, or if it attempts to make a resource reservation along the shortest path and is denied.
Thus, many 
ows may be denied service even though other paths could accommodate their
service requirements.

� Opportunistic routing problem: When current routing protocols adapt to a new shortest path,
an application may experience a service disruption. For example, if a 
ow has obtained a
good route, and then the route changes, portions of the new route may not have the necessary
capacity. If the 
ow is unable to completely re-establish its desired service on the new path,
service will be unnecessarily disrupted.

Many in the research community have proposed QoS routing techniques to solve these prob-
lems. A typical QoS routing scheme globally distributes topology, link resource availability, group
membership, and (in some cases) per-
ow resource usage. A source's �rst-hop router then uses
this information to compute a multicast tree that is known a priori to have available resources.
Finally, this same router uses a source-initiated setup protocol to install the multicast tree in the
network. The bulk of this work attempts to minimize tree cost, primarily for static multicast groups
[BKJ83, Wax88, Cho91, KPP92]. The Internet and ATM communities have begun applying these
results to link-state multicast routing protocols [RGW97, ZSSC96, PNN].

Because these QoS routing approaches require global distribution and synchronization of such
rapidly varying quantities, we do not believe they are applicable to interdomain routing, where
issues of scale are paramount.1 A global database of topology alone scales linearly with the size
of the network; neither group membership nor the number of 
ows is limited by the size of the
network. Additionally, the overhead required to maintain a consistent view of this data depends
on application behavior, such as group membership changes and resource usage. We believe this

1QoS routing may still be used within a domain.
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combination of storage and processing overhead rules out the use of centralized computation and
installation of routes, as well as global optimization of these routes.

One alternative to QoS routing that does scale adequately for interdomain routing is to compute
multiple paths for each destination based on relatively static routing metrics. In this approach,
called QoR routing, the metrics re
ect the \Quality of Route" using static service characteristics
such as maximal bandwidth or minimal latency to indicate link capabilities. The routing protocol
maintains a separate routing table for each metric, and applications indicate the their desired QoR
when sending data. This is similar to the congestion-sensitive type-of-service routing described
in [MS95], but routes adapt only to topology changes, not resource usage. QoR routing could
provide signi�cant bene�ts for best-e�ort service by allowing, for instance, interactive applications
to avoid routes involving satellite links, while enabling applications involving asynchronous bulk
data transfers to seek out maximal bandwidth paths. For similar reasons, QoR routing could bene�t
real-time and other inelastic applications.

Because QoR routing metrics are static, this approach has none of the scaling problems of the
more dynamic QoS routing proposals. However, the essence of the failed primary route problem
remains; an application could only avail itself of one minimal-latency route, and one maximal-
bandwidth route, etc. If a service requirement was denied along one of these pre-computed routes,
there would be no way of utilizing available bandwidth along other routes with similar properties.
Thus, while QoR routing can increase the chance that an application will be satis�ed with the
primary route, receivers need routing to install alternate paths into a multicast tree on demand.
Likewise, QoR routing does not solve the opportunistic routing problem, since QoR routes adapt
as the metrics change. Therefore, receivers need routing to also install pinned routes { routes that
will not adapt unless they fail { into a multicast tree on demand.

In this paper, we introduce a routing architecture in which alternate paths and pinned routes
are installed by a multicast route setup mechanism. Existing route setup mechanisms use sender-
oriented route setup or require routers to know the identities of downstream group members [DB95,
FBZ94, UNI95], which renders them unusable for interdomain routing. We describe a simple,
scalable route setup mechanism named MORF and show that it prevents loops while establishing
and re-routing a multicast tree.

The key to the viability of this architecture is whether routers can �nd adequate alternate paths.
To scale to the interdomain level, we propose to use route construction that is both decentralized
and query-driven. Routers with local receivers �nd alternate paths for their receivers on-demand.
Moreover, these routers do not use global distribution of topology to �nd routes. Rather, they �nd
routes using a partial map of the network, which they build using heuristics to query the routing
tables of other nodes. In this paper, we present the results of a simulation study demonstrating the
viability of using localized route construction to �nd alternate paths around bottlenecks. Our intent
in presenting these results is to demonstrate the utility of several low-cost, proof-of-concept route
construction heuristics, thus validating our architecture. As others �nd better route construction
heuristics, routers may incrementally deploy the improvements.

In our approach to route construction, we are designing for the case when congestion is not
widespread, and thus do not attempt to �nd paths where resource availability is known a priori.
We view this as the most feasible approach for interdomain routing for several reasons. During
times of high load when congestion is common, using alternate paths can degrade network utilization
[KZ89, Aki84]. Moreover, it is impracticable to design a scalable route computation method for
�nding the proverbial needle in a haystack | the one route that has available resources among a
very large number of routes that do not.
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Figure 1: Routing Architecture

Thus, our solution to the failed primary route and opportunistic routing problems consists
of two enhancements to the routing infrastructure: (1) a multicast route setup protocol and (2)
localized route construction. We begin the rest of this paper by �rst discussing our multicast routing
architecture in Section 2, showing how routing may install alternate paths and pinned routes on
behalf of local receivers. Then in Section 3 we describe MORF, our multicast route setup protocol,
and analyze its loop-freedom. In Section 4 we describe interdomain route construction heuristics
we have developed and present simulations showing their e�ectiveness in �nding alternate paths.
Section 5 discusses related work and Section 6 presents our conclusions.

2 Multicast Routing Architecture

2.1 Overview

Our multicast routing architecture utilizes four primary components to build multicast trees (Fig-
ure 1). The multicast routing protocol constructs multicast trees based on routes obtained from
the unicast routing protocol.2 The route setup protocol installs alternate paths and pinned routes.
It operates separately from the unicast and multicast routing protocols, but interacts with them
to override their computations. Routers at the endpoints of the network (i.e. near hosts) may
also incorporate a local route construction agent, which �nds alternate paths for the route setup
protocol.

Figure 1 also shows how applications and the reservation protocol interact with the routing
architecture. Applications access route setup and reservation setup through two separate interfaces,
in contrast to many QoS routing proposals where there is a single interface. Note that there is
no application interface to the local route construction agent; the application's �rst-hop router
contacts the agent when it needs a route. By not allowing the application to determine the routes
being used, we prevent a malicious, malfunctioning, or misguided user from providing its own route
and undermining the integrity or e�ciency of a given tree.3

In the most simplistic model of how this architecture would be used, applications would interface
directly with routing and the reservation protocol, respectively. In fact, given the complexity of the
service options available, we assume that many operating systems will o�er some form of support

2DVMRP [WPD88] uses its own internal unicast routing protocol, but this is equivalent for the purposes of our
architecture.

3We are indebted to our colleagues Steve Deering and Van Jacobson for emphasizing that end systems should not
control routing.
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Figure 2: Example Use of Route Architecture

for managing quality of services. Such a QoS manager could act as an agent on behalf of an
application, managing the reservation establishment and the routing services procurement process.
A user (or a monitoring program) may simply indicate that service is unacceptable. The QoS
manager could then choose from a number of actions, including asking for one of the available
routing services, depending on the application. Thus, the QoS management function could reside
either in the application itself, or in a QoS manager, or in some other form of operating system
support. All of these possibilities �t within our proposed architecture; we are de�ning the services
available to an end-host, not the organization of software on an end-host.

To initiate alternate path setup, an application or a QoS manager prompts routing for a di�erent
route (Figure 2). This signal may be prompted by many factors, including a user's unhappiness
with packet delays or an admission control failure along the shortest path. The �rst-hop router
then contacts the local route construction agent, which returns an explicit route4 that meets the
receiver's criteria. The setup protocol installs and pins this route, re-con�guring the multicast tree
at each hop.

To pin an existing opportunistic route, the application or QoS manager prompts routing to pin
the current route (Figure 2). This signal may be prompted by any indication that the application
is satis�ed with the current route and wants to minimize its chances of disruption, for example if
packet loss is low or it has succeeded in making a reservation along the route. The �rst-hop router
probes the multicast tree to determine the current route, and encodes this route as an explicit
route. The setup protocol then installs and pins this route, using the same mechanism as for an
alternate path.5 Note that the extra trip for probing the route allows routing to prevent loops
during pinning by using an explicit route (see Section 3).

2.2 Multicast Route Setup Protocol

A number of reservation protocols perform route setup at the same time as installing a reservation
[FBZ94, DB95, Sti95]. However, applications not using reservations may want to utilize route setup.
For example, use of video- and voice-conferencing over the multicast backbone is widespread today
[CD92], but each receiver is limited to using the shortest path. When congestion occurs on this
path, a receiver may want to use route setup to install an alternate path, yet still use best-e�ort
service over that path if it yields adequate performance. In this context, applications could use a
reservation protocol as yet another, separate enhancement of this service model. This requires that

4We could use the term source route, but the route lists hops from the receiver to sender and is installed by a
router near the receiver.

5In fact, a pinned route is really an alternate path in the sense that it is an alternative to the opportunistic route
already in place.
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we not embed route setup in the reservation protocol itself, but rather incorporate it into the basic
routing infrastructure.

The function of the multicast route setup protocol, then, is to install explicit routes on behalf
of receivers, overriding the opportunistic routes used by a multicast tree. Any route it installs is
pinned so that it remains in place until it fails, at which time the multicast tree migrates back to
an opportunistic route.

The setup protocol represents all routes as strict explicit routes, listing all hops in order from
the receiver to the sender. This restriction enables the setup protocol to more easily guarantee the
loop-freedom of the multicast tree (see Section 3).

2.3 Local Route Construction Agent

One of the key challenges of this multicast routing architecture is to develop a route construction
protocol that may be applied to the interdomain scale. We distribute route computation to routers
located near receivers and do not attempt to �nd routes based on link resource availability. Instead,
routers �rst use the shortest path and then, as needed, �nd alternate paths that avoid any bottle-
necks. This design follows the uni�ed routing model [ERH92], in which commonly-used routes are
pre-computed and routes used less frequently are computed on-demand.

Using localized route construction reduces the problem of constructing multicast routes to that
of constructing unicast routes. Each route construction agent only needs to �nd a route between
a local receiver and the sender, rather than having to take into account the entire multicast tree.
This approach scales well to large multicast groups and allows agents to use existing unicast routing
protocols as the basis for a route construction algorithm.

In addition, using localized route construction has several other advantages. First, because a
route construction agent does not need to coordinate its routing decisions with other agents, it can
utilize information that is not captured by the routing protocol's static metrics. This information
can include the status of local reservation requests or resource availability information that is only
known locally. In addition, route construction agents do not need to globally agree on a metric or
algorithm. This allows diversity in the evolution of route construction techniques.

One consequence of using localized route construction is that routers may choose con
icting
routes. Because any node in a multicast tree must have a single parent, routes using con
icting
parents must be resolved. In the multicast routing architecture, the route setup protocol resolves
such con
icts as it installs each route. Section 3 discusses this procedure in more detail.

3 The MORF Multicast Route Setup Protocol

We have designed the MORF multicast route setup protocol to install routes provided by local
route construction agents. A router initiates installation of an explicit route by generating a
Setup message containing the route (Table 1). MORF forwards the Setup message along the route,
creating a Setup Tree that it maintains separately from the shortest-path tree built by the multicast
routing protocol. Where the Setup Tree con
icts with the shortest-path tree, MORF overrides the
shortest-path tree, and the multicast routing protocol prunes the con
icting branches (Figure 3a).
MORF also adjusts forwarding table entries so that the resulting multicast tree re
ects the path
installed by MORF (Figure 3b). The multicast tree may be for a single sender [DEF+94], or
multiple senders may rendezvous via a core [DEF+94, BFC93]. In either case, the protocol is the
same; in the following discussion we refer to sender-based trees for simplicity.
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Table 1: MORF Protocol Messages

Messages Parameters

Setup(Group,Target,Route) Group : multicast group
Failure(Group,Target,SetupRt,TreeRt) Target : sender or core
Teardown(Group,Target) Route : explicit route

SetupRt : route from Setup
TreeRt : route used by tree

Prune

Setup

a) Setup builds Setup Tree, prunes
multicast tree

b) re-configured Setup tree and
multicast tree

multicast tree
Setup Tree

Figure 3: Using a Setup Message to Install a Route

Since the Setup Tree overrides default opportunistic routing, each router in the Setup Tree must
have a mechanism to detect failures of an alternate path or a pinned route. The setup protocol
may rely on a unicast routing protocol to exchange query messages with its neighbors to determine
whether they are alive, or it may use its own similar mechanism. Once a failure is detected, MORF
sends a Teardown message both upstream and downstream of the failure to remove failed branches
from the Setup Tree (Figure 4a). At each hop, MORF noti�es the multicast routing protocol of
the branches it is removing. The multicast routing protocol re-builds the multicast tree to re
ect
its metric, often the shortest path to the sender (Figure 4b).

The above examples represent the simpli�ed case when a Setup does not con
ict with the rest
of the Setup Tree. However, the setup protocol must also resolve Setup messages from di�erent
leaves that use con
icting routes, because leaf routers may use independent route construction
agents. MORF resolves con
icts by choosing the �rst route that is installed for any given branch
of the tree. Where subsequent routes meet this branch, they must conform to the route used from
that point upward toward the source. If the setup protocol does not follow this restriction, then a
number of looping scenarios may arise; Section 3.1 discusses these cases and the manner in which
they are prevented.

Figure 5 shows an example of how all Setup messages except the �rst one must match the route
already used by the Setup Tree. When a Setup message adds a node to the Setup Tree, it caches
the route it will use to travel from that node upward toward the sender. If a subsequent Setup
message arrives at that node, it compares the remaining route it must travel to the route cached
locally. If the routes do not match, the node stops processing the Setup and sends a Failure message
downstream (Figure 5a). The Failure message contains the route used by the failed Setup and the

7
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after failure, Join  re-builds multicast tree

b) re-configured Setup Tree and
multicast tree

multicast tree
Setup Tree

Teardown
Teardown
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Figure 4: Using a Teardown to Remove a Failed Route

a) Setup does not match, triggers
Failure

b) Setup matches

Setup(<1,2,3,4,6,S>)

Failure(<1,2,3,4,6,S>,<4,5,6,S>)

Setup(<1,2,3,4,5,6,S>)

S

1

32

5 4

6

S

1

32

5 4

6

<4,5,6,S> <4,5,6,S> multicast tree
Setup Tree

Figure 5: Matching Setup Messages

route used by the tree from the rejecting node upward (Table 1). A router receiving a Failure
message merges the two routes it contains to construct a new route that will match the tree, then
sends a second Setup with this route (Figure 5b).

It is from this mechanism { Match or Fail { that MORF derives its name. By using this
restriction, MORF may increase the setup latency, but it prevents any loops from forming while
the tree is constructed. The remainder of this section discusses potential looping scenarios and
analyzes the tradeo�s of MORF versus other potential solutions for preventing loops.

3.1 Preventing Loops

When Setup messages are not restricted to matching the rest of the Setup Tree, a number of possible
looping scenarios arise. Figure 6a shows two Setups, each using an explicit route. Based on their
order of arrival, as shown, if the Setups merge they form a loop. This loop can be prevented if
nodes 1 and 3 compare the routes and detect the loop will form. However, when three joins are
involved, as in Figure 6b, a single node cannot prevent the loop from forming without having more
information available.

To prevent loops, a node can use one of two strategies:

1. Before adding a parent, the node checks all its descendants to be sure the parent is not already
a descendant.
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Setup #2 <6,3,1,S>
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Sender:

Loop:

S

1-2-3-1
5

2

31

S
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Figure 6: Loops Formed by Setup Messages

a) Setup triggers Merge sent upstream b) Setup triggers Merge sent downstream

multicast tree
Setup Tree

Setup(<1,2,3,4,6,S>) Setup(<1,2,3,4,6,S>)

S

1

32

5 4

6

S

1

32

5 4

6
Merge(<1,2,3,4,6,S>)

Merge(<1,2,3,4,5,6,S>)

Figure 7: Merging Setup Messages Instead of Matching

2. Before adding a child, the node checks all its ancestors to be sure the new child is not already
an ancestor.

We discuss each of these in turn. Due to the dynamic nature of multicast trees, a node may
not know all of its ancestors or descendants. While a node knows the route embedded in the
Setup message it has sent upstream, that message may have merged with another Setup carrying
a di�erent route. Likewise, other Setups may have merged downstream, adding new descendants.

One approach to keep nodes updated concerning upstream and downstream merges is to dis-
tribute information after each merge. Following solution (1) above, each Setup that merges can
send a Merge message upstream containing its route (Figure 7a). Every node can then know all
its descendants and thereby detect any loops. Alternatively, in keeping with solution (2) above,
each Setup that merges can send a Merge message downstream containing the upstream portion
of the route it merged with (Figure 7b). This allows every node to detect loops by knowing all its
ancestors. We denote these two mechanisms as Merge Up and Merge Down, respectively. In both
of these approaches, information distributed by the Merge messages may be stale, so loops such as
that shown in Figure 6 may still form temporarily before being broken.

As opposed to these solutions, which in some cases will only detect loops after they have been
formed, the strategy we use in MORF prevents any loops from forming. By requiring each Setup
to match the upstream route already in place on the tree, MORF in e�ect enforces solution (2) by
requiring that each node know its ancestors before it is added to the tree. Once a node is added to
the multicast tree, its ancestors do not change. The cost of this strategy is that each Setup may

9



Table 2: Comparison of Setup Mechanisms

Mechanism Message Storage Setup Loop
Name Overhead Overhead Latency Handling

MORF O(1) O(a) 1 or 3 trips Prevent
Merge Down O(1) O(a) 1 trip Detect/Break
Merge Up O(d) O(d) 1 trip Detect/Break

take an extra roundtrip between itself and the rest of the tree.
Table 2 compares MORF to the Merge Down and Merge Up mechanisms, when building a single

multicast tree, assuming there is no packet loss and that one receiver joins the tree at a time. The
columns listing message and storage overhead consider the behavior of each mechanism at a single
node. Overhead in these cases is expressed in terms of a, the number of ancestors of a node, or d,
the number of descendants of a node. The setup latency column lists time in terms of the number
of trips taken between a receiver and the multicast tree.

Clearly the Merge Up mechanism does not scale well because each node must store each de-
scendent as well as send one message upstream for each descendant. The advantages of using a
receiver-oriented mechanism are lost with Merge Up; a sender-oriented mechanism has the same
message overhead, but only the sender must store the descendants.

The MORF and Merge Down mechanisms have a similar overhead in this situation. The MORF
mechanism may have a longer setup latency, but in return has the distinct advantage that it may
prevent rather than just detect loops, as discussed above.

3.2 Unicast Route Setup

Previous work has studied the e�cacy of using explicit routing to support unicast real-time ap-
plications [Bre95]. One way to use explicit routes to provide alternate paths or pinned routes
is to embed the explicit route in an application's packets [EZL+96, HLFT94, DH95]. Assuming
the route will be inserted by the sender's nearest router, no modi�cations to applications will be
needed. However, because many routers currently delay processing of explicitly routed packets,
this mechanism may not be applicable to applications with strict delay requirements.

An alternative is for the sender's nearest router to insert a label in the application's packets
rather than an explicit route. This label would reference an alternate path or pinned route that is
installed using MORF.6 Because unicast applications involve only one receiver, the setup latency
will only be 1 trip.

4 Interdomain Route Construction Heuristics

Given a scalable interdomain route setup protocol, the important issue we must address is whether
we can construct useful alternate paths at a reasonable cost. Due to the scaling problems inherent
in distributing global topology information at the interdomain level of the network, we propose

6The label could in fact be a multicast group address, reducing unicast alternate path routing to a special case of
multicast.
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that a route construction agent use heuristics to partially explore the interdomain topology and
�nd routes.

We have developed several low-cost, proof-of-concept heuristics that do not require changes to
routing protocols, thus allowing incremental deployment at the edges of the network. To determine
their e�ectiveness in �nding alternate paths, we have conducted a simulation study over various
types of random topologies. For the purposes of our simulations, we have concentrated on validating
our approach by trying to �nd routes around a single overloaded interdomain-level link.

4.1 Approach

Our approach relies on route construction agents to serve local receivers (Figure 8a). When a re-
ceiver needs an alternate path, its local agent uses heuristics to �nd a route around any bottlenecks.
If the local agent is unable to �nd an alternate path, it may contact an agent near the sender for
a route (Figure 8b).

Because the agents do not have full topology information, they must build a partial map of the
topology to �nd alternate paths. We have focused on methods for gathering topological information
that is available with existing routing protocols. We have developed the following algorithm for
exploring paths:

1. An agent explores the current path from itself to a small set of Initial Nodes in the network.
These nodes may be randomly chosen or may consist of all the nodes within n hops. The
agent initializes its map with these paths.

2. When the route setup protocol requests an alternate path from the agent, the request identi�es
a multicast tree (a group and a sender or core) and a bottleneck link. The agent probes the
multicast tree for the requesting receiver's current path to the sender, adds this information
to its map, and marks the bottleneck link.

3. The agent then runs a Dijkstra computation over its current map to �nd an alternate path
around the bottleneck link. If one is found, it returns this path to the route setup protocol.

4. If a path is not found, the agent augments its map by exploring the current path from some
other node in its map { a \third-party" { to the sender. The third-party is chosen using a

11



Table 3: Overhead and Path Length Bounds for Route Construction Heuristics

Heuristic Overhead Bound

N-Hop c(c� 1)N�1

N-Hop+Sender 2c(c� 1)N�1

M-Random M

M-Random+Sender 2M
N-Hop+M-Random M + c(c� 1)N�1

N-Hop+M-Random+Sender 2M + 2c(c� 1)N�1

breadth-�rst search of the map, starting from the agent, and �nding the �rst Initial Node not
already used as a third-party for the sender in question. Once a third-party is found that
adds new links to the map, the agent returns to step 3 to re-run the Dijkstra computation. If
no such node is found, then no alternate path can be found locally. At this point, the agent
may optionally contact an agent that serves the sender of the multicast tree.

The variable parameters in this algorithm are the method by which nodes are selected to
initialize the agent's map { either random or within n hops { and the option to query another
agent near the sender of the tree when a route cannot be found locally. Combining the variations
of these parameters yields the following set of heuristics:

N-Hop Initialize using all nodes within N hops,

N-Hop+Sender Same as above, but query the sender's agent if unable to �nd a route
locally,

M-Random Initialize using M random nodes,

M-Random+Sender Same as above, but query the sender's agent if unable to �nd a route
locally,

N-Hop+M-Random Initialize using all nodes within N hops and M random nodes (not
including any nodes within N hops),

N-Hop+M-Random+Sender Same as above, but query the sender's agent if unable to �nd a route
locally.

We can bound the overhead of each of the above hueristics in terms of the number of third-party
queries performed for a single alternate path search. Table 3 lists these bounds in terms of c, the
maximum degree of connectivity of the network; N, the number of hops explored initially; and M,
the number of random nodes explored initially. In the algorithm given above, third-party queries
are limited to the set of Initial Nodes, thus overhead is bounded by the size of this set. In the
case of the N-Hop heuristic, this bound is c(c� 1)N�1; deriving the bounds for the other heuristics
is straightforward. By keeping N small (i.e. 1 or 2 hops), we can limit the overhead of all of the
heuristics to a small number of third-party queries.
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a) 100-node flat random network b) 100-node transit-stub network

Figure 9: Generated Networks

4.2 Simulation Model

We have implemented the route construction algorithm given above within the LBNL network simu-
lator [MFF] to evaluate e�ectiveness in �nding alternate paths. Our primary goal is to characterize
the performance of the heuristics according to a varied set of topologies. We are also interested in
measuring the path length of alternate paths computed using the heuristics; they should not be
many hops longer than the shortest path.

4.2.1 Topology

We generated various large topologies using the Georgia Tech ITM topology generator [ZCB96, CZ].
We used one 
at random network of 100 nodes (Figure 9a), using the Doar-Leslie edge-connection
method [DL93] to generate edges that mostly connect nodes \near" each other. The average degree
of connectivity for this network is 4.26. We also created transit-stub topologies, which consist
of a backbone network and connected stub networks, with each sub-network generated randomly.
Figure 9b shows a 100-node transit stub network we used, having an average degree of connectivity
of 3.74. To determine how well our heuristics scale to larger topologies, we also generated three
1000-node transit-stub networks.

4.2.2 Workload

Given a single topology, the performance of the route construction heuristics will depend on the
locations of the agent, the sender, and the bottleneck link. We have designed a workload that
characterizes the e�ectiveness of a heuristic for a given topology by varying the placement of these
three entities. For each topology, a simulation begins by randomly choosing a sender and a receiver.
It then iterates through each of the links between the sender and receiver, assuming in turn that
each link is the bottleneck link. The route construction agent, which we assume is co-located with
the receiver, then tries to �nd an alternate path around that link.

The output of a single simulation, using a single sender-receiver pair, is the number of attempts
made, the number of times an alternate path is found, the length of the alternate paths, and the
number of route queries needed to compute the paths. If the heuristic is based on M-Random,
then we repeat each simulation 100 times to compute averages for these numbers. Other heuristics
only need to be run one time. For each of the generated topologies, we ran simulations for 100
sender-receiver pairs.

13



Table 4: Success Rate of Heuristics on 100-node Flat Random Network

Heuristic Average Success Rate

1-Hop 0.77
1-Hop+Sender 0.93
1-Random 0.76
1-Random+Sender 0.91
1-Hop+1-Random 0.92
1-Hop+1-Random+Sender 0.98
2-Hop 0.97
2-Hop+Sender 1.00

4.3 Simulation Results

We ran a battery of simulations using the above workload for each of the route construction heuris-
tics. We then evaluated each of the heuristics based on success rate and path length.

4.3.1 Success Rate

To determine the e�ectiveness of the heuristics, we compute the success rate by dividing the number
of successes versus the number of attempts. We do not count attempts where there is no alternate
path available, i.e. where even an algorithm with full knowledge of the topology will not �nd
an alternate path. It is important to note that our experiments have underestimated the success
rate because a given route server is �nding alternate paths to only a small number of senders. In
practice, a route server may handle requests for routes to a large number of senders, and any single
request may bene�t from routes learned for other requests. This will particularly be true when
�nding routes around local bottlenecks.

Table 4 shows the success rate of some of the route construction heuristics for a 100-node 
at
random network. For the 
at random network, both the 1-Hop and 1-Random heuristics are able
to �nd an alternate path about 75% of the time. Any combination of these heuristics with each
other or with querying the sender is e�ective over 90% of the time.

Although the average success rate for the 1-Hop and 1-Random heuristics is nearly identical,
the distribution of the success rate among various sender-receiver pairs is quite di�erent. Figure 10
shows a histogram of the success rate for these two heuristics. For these histograms, we group the
alternate path attempts of each sender-receiver pair and calculate the overall success rate of each
pair. Based on these histograms, querying local routers will always be helpful for some sender-
receiver pairs and will never help for others. On the contrary, querying a single random router will
always help to �nd some alternate paths in a 
at random network.

While the histograms are useful for determining the distribution of a single heuristic, graphing
the cumulative distribution of the sender-receiver paired success rates is useful for comparing many
di�erent heuristics. For ease in reading these graphs, we have converted the cumulative distribution
function Fx(a) = P (x <= a) into a diminutive distribution function (DDF) Fx(a) = P (x >= a).
Thus, for a given point on the graph, the y value represents the percentage of sender-receiver pairs
whose success rate is greater than or equal to the x value. For example, Figure 11a shows that, for
the 1-Hop heuristic, 75% of the sender-receiver pairs �nd an alternate path 50% of the time, and
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Figure 10: 1-Hop and 1-Random Heuristics on 100-Node Flat Random Network
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Figure 11: DDF of Heuristics on 100-Node Flat Random Network

66% always �nd an alternate path. This �gure also shows that, for the 1-Random heuristic, all of
the pairs are successful at least 36% of the time, but only 11% have a success rate higher than 90%.
The 1-Hop+1-Random heuristic combines the potential for high success of 1-Hop with the lower
bound of 1-Random.

Because 1-Hop has such a high potential success rate for a sender-receiver pair, we are interested
in the value of combining it with other heuristics. Figure 11b compares the e�ectiveness of adding
1-Random and a query to the Sender to 1-Hop, versus expanding 1-Hop to 2-Hop. Adding just a
query to the Sender to 1-Hop increases the percentage of pairs that always �nd an alternate path
from 66% to 83%. Adding 1-Random to this combination raises the lower bound on success rate
from 0 to 49%. While 2-Hop still has a lower bound of 0%, only 3% of the pairs fall in this category.
Almost all of the other pairs always �nd an alternate path.

While many of the heuristics perform well on the 
at random network, they all perform sub-
stantially worse on the 100-node transit-stub topology. Table 5 shows the success rate of the same
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Table 5: Success Rate of Heuristics on 100-node Transit-Stub Network

Heuristic Average Success Rate Decline From Flat Random

1-Hop 0.35 0.42
1-Hop+Sender 0.68 0.25
1-Random 0.07 0.69
1-Random+Sender 0.15 0.76
1-Hop+1-Random 0.41 0.51
1-Hop+1-Random+Sender 0.74 0.18
2-Hop 0.41 0.56
2-Hop+Sender 0.77 0.23
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Figure 12: DDF of Heuristics on 100-Node Transit-Stub Network

heuristics run over the transit-stub network, along with the di�erence between this rate and that
for the 
at random network.

In particular, the 1-Random heuristic �nds an alternate path only 7% of the time, compared
to 76% for the 
at random network. The reason for this decline can be seen by by examining the
100-node transit stub topology in Figure 9b. Nearly all of the nodes (96 out of 100) are located
in one of the stub networks, each of which has an average of 8 nodes. Thus when the simulation
randomly chooses a sender and a receiver, most likely they will be located within two di�erent
stubs. Then, when the agent randomly explores the path to one of the nodes, it is likely to choose
a node that is in yet a third stub. With this map, the agent will not explore any part of the sender
and receiver's stub networks except for the shortest paths through them. Thus the only times the
agent is likely to �nd an alternate path will be the rare occasions when the third party is within
the same stub as the sender or receiver or when the bottleneck is in the backbone.

The N-Hop+Sender heuristic, on the other hand, is better able to �nd alternate paths around
local bottlenecks, either within the vicinity of the receiver or near the sender. Thus, this heuristic
is much more successful on the transit-stub network than those using random nodes. Figure 12
demonstrates the e�ectiveness of querying the Sender in this topology, showing the DDF for 1-Hop
and 2-Hop both with and without a query to the sender. Clearly the bene�t of querying the sender

16



Table 6: Generation Parameters For Transit-Stub Networks

Network Number Number Transit Stubs/ Stub
Name Nodes Transits Size Transit Size

100 100 1 4 3 8
1000-1 1000 1 40 3 8
1000-2 1000 10 4 3 8
1000-3 1000 1 4 3 83

far outweighs the bene�t of adding an extra hop to the heuristic. Likewise, increasing the number of
hops has more impact when the heuristic also queries the sender, since both the sender and receiver
are expanding the radius of their search. To further con�rm the suitability of N-Hop+Sender for
�nding local bottlenecks, we re-analyzed the data for this topology considering only bottlenecks
within a stub. In this scenario, the success rates of 1-Hop+Sender and 2-Hop+Sender rise to 84%
and 92%, respectively.

Our simulations on 100 nodes thus con�rm the following results:

� Topology a�ects the performance of the heuristics.

� Querying local nodes helps �nd alternate paths around local bottlenecks.

� Querying the sender always helps to �nd alternate paths, particularly for local bottlenecks
near the sender.

We believe that �nding routes around local bottlenecks is an important case because we expect
the backbone of the network to be well-engineered, whereas a connecting domain may experience
temporary overload.

To observe how well these heuristics scale to larger networks, we repeated our simulations using
three 1000-node transit-stub networks. We generated each of these networks by building on the
100-node transit stub topology and making a di�erent modi�cation for each of the three networks.
Table 6 lists the generation parameters for all of the transit-stub networks, which have an average
degree of connectivity of 3.74, 4.35, 3.60, and 4.45 respectively. For Network 1000-1, we speci�ed
a larger transit network, resulting in a larger, highly-connected backbone and more stub networks
(each node in the backbone retains the same number of average stub networks). For Network 1000-
2, we speci�ed more transit networks, resulting in a larger, hierarchical backbone and likewise more
stubs. Finally, for Network 1000-3, we speci�ed larger stubs, which retains a very small backbone
and the same number of stubs. To keep the node degree low for these stubs, we used the Doar-Leslie
edge connection method.

Table 7 shows the success rate of some of the heuristics run over these larger topologies as
compared with the 100-node network. Because the 1-Hop+Sender and 2-Hop+Sender heuristics
�nd alternate paths around local bottlenecks, they perform best on Network T1000-3, in which
the size of the stubs dominate the network. Likewise, these same heuristics do not perform as
well when the number of transit networks is increased in Network T1000-2. These two heuristics
continue to �nd alternate paths around local bottlenecks, either within a stub or a transit network,
but do not �nd alternate paths around distant bottlenecks when the connection between networks
is hierarchical. On the other hand, when the backbone consists of a large, 
at transit network, as
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Table 7: Success Rate of Heuristics on 1000-node Transit-Stub Networks

Average Success Rate
Heuristic Net T100 Net T1000-1 Net T1000-2 Net T1000-3

1-Hop+Sender 0.68 0.60 0.46 0.76
2-Hop+Sender 0.77 0.73 0.59 0.86
1-Hop+1-Random+Sender 0.74 0.90 0.83 0.80

1-Hop+Sender, Stubs 0.84 0.86 0.87 0.86
2-Hop+Sender, Stubs 0.92 0.97 0.97 0.97

Table 8: Path Length of Alternate Paths

Average Number of Extra Hops per Alternate Path
Heuristic Net F100 Net T100 Net T1000-1 Net T1000-2 Net T1000-3

Global 0.67 0.69 0.62 0.79 0.63

1-Hop 0.81 0.64 0.62 0.70 0.61
1-Random 1.17 0.82 0.84 1.21 0.97

1-Hop+Sender 0.77 0.62 0.60 0.59 0.54
2-Hop+Sender 0.95 0.68 0.64 0.67 0.64
1-Hop+1-Random+Sender 0.97 0.64 0.69 0.96 0.57

with Network T1000-1, these heuristics can also �nd alternate paths within the backbone. The last
two lines of the table emphasize the ability of the N-Hop+Sender heuristics to �nd routes around
local bottlenecks. If overall performance on a variety of hierarchical networks is a consideration,
then the 1-Hop+1-Random+Sender heuristic, by combining local queries with random queries, is
able to consistently �nd routes around both local and distant bottlenecks.

4.3.2 Path Length

We measured the length of all of the alternate paths found by each heuristic and compared the
length to the alternate paths found by the algorithm using global knowledge of the topology. The
global algorithm �nds the shortest available alternate path; thus, by taking the di�erence in path
length we can determine the number of \extra" hops in the alternate paths found by the heuristics.

Table 8 lists the average number of extra hops for some of the heuristics on each of the topologies.
We have grouped the data into several categories for ease in comparing the results. The �rst group
lists the average number of extra hops for the global algorithm. Compared to this, the 1-Hop
heuristic generally has comparable paths, with 1-Random having longer paths. The last group
of data includes the three heuristics whose success rates are the highest. In almost all cases, the
average number of extra hops is below one.

These results indicate that the heuristics often �nd an alternate path whose length is equal
to that of the shortest path. If this also holds true for real-world networks, then a distance-
vector unicast routing protocol like BGP [RL94] could pass through some equal-cost paths to route
servers, simplifying route computation. If these paths are used frequently, then it will be cheaper to
distribute them rather than compute them individually at each route server. A route server would
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still need to use the route querying heuristics described within this paper to �nd less-frequently
used and slightly longer alternate paths when other paths are not adequate. This division of labor
between pre-computed paths and on-demand computed paths has been proposed earlier as a part
of the uni�ed routing architecture [ERH92].

5 Related Work

The MORF protocol we present herein is novel in that it is receiver-oriented (making it scalable
for multicast) and uses a simple mechanism to prevent loops. The ATM Forum has published
a setup mechanism for multicast trees that includes receiver-oriented joins, but it requires the
source to establish all branches of the multicast tree [UNI95].7 In the Internet community, both
the ST-II [DB95, DHHS93] and Tenet [FBZ94, BFG+95] protocols establish multicast trees using
primarily sender-oriented mechanisms. ST-II speci�es additional mechanisms for receiver-oriented
joins, but only along shortest-path routes and nodes in the tree must know the identity of all leaves
in their subtree. More recent work allows receiver-oriented setup of non-opportunistic branches
in a multicast tree [PGLA97], but again only along shortest-path routes and at the expense of
considerably more state to prevent looping. Finally, Guerin et al. have recently proposed a sender-
oriented route pinning mechanism [RG97], but the approach is applicable only to unicast routing
and uses only shortest-path routes.

We have discussed several route construction heuristics that do not require global distribution
of topology. Alaettinoglu explored route construction using aggregation and hierarchical heuris-
tics for querying remote aggregates for more detailed information [Ala94]. Hotz has studied route
construction heuristics based on route fragments and triangulation of graph position [Hot94]. In
contrast to the above work, QoS routing protocols globally distribute topology and group infor-
mation. A large body of QoS multicast routing literature uses Steiner trees to optimize tree cost
for small, static groups [BKJ83, Wax88, Cho91, KPP92]. Salama et al. compare these and other
approaches [SRV97]. The Internet and ATM communities have proposed multicast protocols using
related techniques for more dynamic groups [RGW97, ZSSC96, PNN]. Because of scaling limits,
this work is applicable for intradomain routing.

As a means for providing a variety of paths to meet application requirements, QoR routing is
not a novel idea. Several routing protocols such as OSPF [Moy94b] allow the creation of multiple
routing table entries per destination, and a Type of Service �eld in IP packets has been designed
to index those tables [Alm92]. Recent work by Matta and Shankar [MS95] indicates that such an
approach can improve overall end-to-end delays in the network. While their approach uses metrics
based on measured delay and utilization, the formulations of their metrics result in relatively static
measures that thus do not exhibit the oscillation seen in the ARPANET [KZ89].

The use of alternate path routing during periods of congestion is common in the telecommu-
nications industry [AKK81, GKK88, MS91, HSS91, MG90, MGH91, AH93]. Trunk reservation is
used to limit the use of alternate path routing under high load so that it does not decrease through-
put [Aki84]. Likewise, the Internet community has explored the use of adaptive routing to avoid
congestion and improve throughput [Att81, NSC90, WC90, Bre95]. Estrin et al. introduced the
use of hop-by-hop routing for commonly-used routes, coupled with explicit routing for specialized
routes [ERH92].

7Work in the academic community has provided more scalable receiver-oriented joins for ATM [BDG91], but does
not provide the details of their protocol mechanisms.
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Multicast routing in the Internet was pioneered by Deering, who developed procedures for
hosts to notify routers of their group membership [Dee88a] and multicast routing methods for
both distance-vector and link-state protocols [Dee91]. DVMRP [Dee88b, WPD88] is based on the

ood-and-prune distance-vector method and MOSPF [Moy94a, Moy94c] extends OSPF to include
group membership with link-state advertisements. PIM [DEF+94, EFH+97] introduces explicit join
messages for sparsely-distributed groups and, along with CBT [BFC93, BJR95], allows creation of
multicast trees that are shared by all senders. Comparisons of these protocols include [WE94,
BCFG+97].

6 Conclusions

We have developed two key enhancements for multicast routing that are needed for an integrated
services architecture. First, we have designed a simple, loop-free, and scalable route setup protocol
that routers can use to install alternate paths into a multicast tree on behalf of local receivers.
This allows receivers to utilize routes other than the pre-computed shortest path and to install
those routes as non-opportunistic paths. Second, we have a�rmed that route servers can use
localized route construction techniques to compute useful alternate paths without requiring global
distribution of topology. We have demonstrated the utility of several low-cost, proof-of-concept
heuristics; as others �nd better route construction heuristics, routers may incrementally deploy the
improvements.

Because both the route setup and route construction heuristics are receiver-oriented, they may
cooperate to reduce the impact of alternate paths on the network. We have shown that the route
construction heuristics �nds alternate paths whose average length is not much longer than that of
shortest paths. If a computed alternate path matches what is already in the multicast tree, then its
impact on overall tree size will be negligible. If it does not match, then the route setup mechanism
will return the path in use by the multicast tree and require the originating router to modify its
alternate path. Thus a router will always know the entire path from itself to the root of the tree,
allowing it to check the impact a path will have on the tree before installing it.
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