
Improving Simulation for Network Research �

Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin Fall,

Sally Floyd, Padma Haldar, Mark Handley, Ahmed Helmy,

John Heidemann, Polly Huang, Satish Kumar, Steven McCanne,

Reza Rejaie, Puneet Sharma, Kannan Varadhan, Ya Xu,

Haobo Yu, Daniel Zappala

USC Computer Science Department Technical Report 99-702

March 4, 1999

1 Introduction

In recent years, the Internet has grown signi�cantly in
size and scope, and as a result new protocols and al-
gorithms are being developed to meet changing opera-
tional requirements in the Internet. Examples of such
requirements include quality of service support, multi-
cast transport, security, mobile networking, and policy
management. Development and evaluation of proto-
cols and algorithms for these domains requires answer-
ing many design questions. Although small-scale eval-
uation in a lab, wide-area testbeds, and custom sim-
ulators can all be valuable, each has signi�cant short-
comings. These approaches often lack the wide mix
of traÆc and topologies found in real networks, they
can incur substantial expense, and repetition of exper-
iments under controlled conditions can be diÆcult.

Multi-protocol network simulators can provide a rich
environment for experimentation at low cost. A com-
mon simulation environment used across disparate re-
search e�orts can provide substantial bene�ts to the
networking community. These bene�ts include im-
proved validation of the behavior of existing protocols,
a rich infrastructure for developing new protocols, the
opportunity to study large-scale protocol interaction
in a controlled environment, and easier comparison of
results across research e�orts.

The VINT project is attempting to facilitate the de-
sign and deployment of new wide area Internet pro-
tocols by providing network researchers with an im-
proved set of simulation tools. This paper presents the
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VINT simulation framework and describes how it aims
to meet many of the simulation needs of the network
research community. We begin by identifying the re-
quirements of a multi-protocol network simulator, after
which we describe how VINT's ns simulator addresses
these requirements. We then present the software ar-
chitecture of ns, which provides an extensible frame-
work within which new protocols can be developed.
We then show several examples of ways in which ns
has been used in protocol design and development, and
we evaluate the success and shortcomings of the VINT
e�ort. We conclude by discussing previous work on
network simulation and related topics, and by describ-
ing future challenges. A companion paper describes
nam, the network animation companion to ns [12].
Ns is publically available at http://www-mash.cs.

berkeley.edu/ns/ and has been widely used by net-
work researchers.

Alternatives to a Common
Simulator (sidebar)

Testbeds and laboratory experiments are also impor-
tant approaches to network research. Since they use
real code, experiments run in testbeds or labs automat-
ically capture important details that might be missed
in a simulation. This approach also has drawbacks;
testbeds are expensive to build, testbeds and labs can
be diÆcult to recon�gure and share, and they have lim-
ited exibility. In addition, some networking phenom-
ena such as wireless radio interference can be diÆcult
to reproduce experimentally, thus making it diÆcult to
compare or evaluate protocol designs.
Protocol design using simulation usually begins with

an individual investigator's simulations of isolated pro-
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tocol elements using small-scale topologies and simpli-
�ed/static assumptions about higher and lower level
protocols. Because the startup costs are so high, no
individual group has the resources to create a com-
prehensive and advanced networking simulation envi-
ronment, leading to a lack of standardization and re-
producibility of simulations constructed by di�erent
groups of designers. In the current paradigm, directly
comparable data would be available only if each indi-
vidual designer implemented, within their own simu-
lator, all of the competing mechanisms. Very few re-
search groups have the resources to do this, and it is
often most e�ective to have a simulation component
constructed by those who know most about the partic-
ular protocol represented by the component.

2 Simulation Needs of
Researchers

Simulation allows the evaluation of network protocols
under varying network conditions. Studying protocols,
both individually and as they interact with other pro-
tocols, under a wide range of conditions is critical to
explore and understand the behavior and characteris-
tics of these protocols. The VINT project, through the
ns simulator and related software, provides several crit-
ical innovations that broaden the range of conditions
under which protocols can be evaluated while making
this experimentation tractable:

� Abstraction: Varying simulation granularity al-
lows a single simulator to accommodate both de-
tailed and high-level simulations. Networking pro-
tocols are studied at many levels, both at the de-
tail of an individual protocol, and in the aggrega-
tion of many data ows and interaction of many
protocols. The abstraction mechanisms in ns al-
low researchers to examine both of these issues
without changing simulators, and to validate ab-
stractions by comparing detailed and abstract re-
sults.

� Emulation: Most simulation experiments are
con�ned to a single simulated world including
only those protocols and algorithms included in
the simulator. However, emulation, which allows
a running simulator to interact with operational
network nodes, can be a powerful tool in protocol
design.

� Scenario generation: Testing protocols under
an appropriate set of network conditions is critical

to achieve valid and useful results. Automatic cre-
ation of complex traÆc patterns, topologies, and
dynamic events (i.e., link failures) can help gener-
ate such appropriate scenarios.

� Visualization: Tools that allow researchers to
understand more easily the complex behavior in
a network simulation are needed. Given the com-
plex range of behaviors, and the large scale of the
networks involved, merely providing tables of sum-
mary performance numbers does not adequately
describe the behavior of the network. Visualiza-
tion adds a dynamic representation to network
behaviors, allowing researchers to develop better
protocol intuition and aiding protocol debugging.
Nam, a network animation tool, is described in a
companion paper [12].

� Extensibility: The simulator must be easy to ex-
tend in order to add new functionality, explore a
range of scenarios, and study new protocols. Ns
employs a split programming model designed to
make scripts easy to write and new protocols eÆ-
cient to run.

In addition to these innovations, several engineering
issues have substantial impact on a simulator's usabil-
ity. First among these is the availability of a wide
range of protocol modules in the simulator. This al-
lows easy comparison of di�erent approaches. It also
reduces simulation development time enabling the re-
searcher to focus on those aspects of the simulation
relevant to the design question being studied. Second,
validated protocols against which new variants can be
compared are needed. Validation of TCP is illustrated
in a separate paper [15]. Other protocols are validated
in ns to the degree warranted by their maturity. Fi-
nally, given the signi�cant number of protocol modules
in ns and the interactions among them, mechanisms
to prevent modi�cations in one module from breaking
functionality in another are needed. To this end, ns
includes many automated test suites that keep unin-
tentional changes in behavior from creeping into the
simulator.

In the following sections we expand on the innova-
tions in ns and we describe its innovative software ar-
chitecture.

3 VINT and the ns Simulator

The VINT project aims to bring a change in current
protocol engineering practices by enabling the study of
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protocol interactions and scaling using a common sim-
ulation framework with advanced features. The public
distribution of our system has helped to reduce the du-
plication of e�ort expended in the networking research
and development community.
As mentioned above, the ns simulator includes sev-

eral special features targeted at supporting large scale,
multi-protocol simulations. These features include an
alternative con�guration for large-scale simulations,
a capability to interface the simulator to a live net-
work, automated simulation scenario generation facili-
ties, and visualization. In the remainder of this section
we describe the �rst three of these features. Visualiza-
tion is described in a companion paper [12].

3.1 Abstracting Simulation

Computer resource limitations such as memory and
processing time often constrain the number of net-
work objects (nodes, links and protocol agents) that
can be simulated in a packet-level simulation. A scal-
able network simulator accommodates wide ranges of
variation in each kind of network object, data in tran-
sit, and information collected. There are three com-
plementary approaches to scaling a simulator: tuning
the implementation, removing unnecessary simulation
detail, and supporting parallelism. Other researchers
have successfully explored parallel network simulation,
and multiple e�orts to parallelize ns are currently un-
derway elsewhere (see \Related Work" for references
to these approaches). Our e�orts are focused on tun-
ing our implementation and providing multiple levels
of protocol abstraction. By eliminating less important
details, substantial savings can be realized while pre-
serving the basic validity of the model.
VINT provides several levels of abstraction in ns.

The default simulator provides a detailed model with
hop-by-hop packet forwarding and dynamic routing
updates. Centralized routing replaces routing mes-
sages with a centralized computation, saving process-
ing time and memory in exchange for slightly di�erent
timing in routing changes. Session-level packet for-
warding replaces hop-by-hop packet ow with a pre-
computed propagation delay [21]. Algorithmic routing

replaces shortest-path routing with tree-based routing,
transforming O(n logn) memory requirements to O(n).
Each abstraction sacri�ces some details to save mem-
ory, so abstractions must be applied only when appro-
priate.
By adjusting the simulation abstraction level, a

user is able to trade o� simulator performance ver-
sus packet-level accuracy. Increasing the level of ab-
straction provides the ability to perform increasingly
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Figure 1: Session-level abstraction allows sub-
stantially larger numbers of multicast group
members in the same amount of memory.

large simulations, while decreasing the level of abstrac-
tion provides for a more realistic simulation. The ses-
sion level simulator can abstract many details of links,
nodes, and cross-traÆc. Simulations can be run in both
detailed and session level mode side-by-side to compare
the performance and accuracy across the di�erent lev-
els of abstraction. Figure 1 shows the memory savings
possible from session-level simulations for a particular
scenario with large multicast groups.

The cost of abstraction is simulation accuracy. The
degree to which accuracy is sacri�ced, and the impact
of this sacri�ce on the validity of the results, varies
greatly between simulation scenarios. For example,
while the details of a particular media's approach to
segmentation and reassembly are important for LAN
simulations, they can be reected adequately in the
link's packet loss rate for higher-level WAN simula-
tions.

To insure that abstraction does not substantally al-
ter simulation results, Figure 2 shows how we validate
simulations at small scale before projecting results at
larger scales [21]. A quantitative analysis of SRM per-
formance across detailed and session simulations sug-
gests that while the timing of individual SRM events
does vary, average aggregate behavior changes by only
3{9% in the cases we examined. Finally, we are also
working on hybrid abstractions in which di�erent por-
tions of the same simulation operate in detailed and
session levels of abstraction.
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Figure 2: Validation of abstract simulations.

Packet Capture and Generation Interface

Local Operating System

NS Simulator

(Emulation Mode)

Simulated Network

Packet Flows

Figure 3: Emulation: live network traÆc passes
through simulated topology and cross-traÆc.

3.2 Emulation interface

Ns includes an emulation interface which provides a
method for network traÆc to pass between real-world
network nodes and the simulator. In combination with
the simulator's tracing and visualization facilities, em-
ulation provides a powerful analysis tool for evaluat-
ing the dynamic behavior of protocols and their im-
plementations in end systems. An emulation scenario
is constructed by placing the simulator as an interme-
diate node (or end node) along an end-to-end network
path, as illustrated in Figure 3. The simulator contains
a simulated network, and passes live network traÆc
through the simulation, subjecting it to the dynamics
of the simulated network. The simulator's scheduler
is synchronized with real-time, allowing the simulated
network to emulate its real-world equivalent so long
as the simulated network can keep pace with the real
world events.

Emulation is useful beyond conventional simulation
in evaluating both end system and network element
behavior. With emulation, end system protocol im-
plementations can be subjected to packet dynamics
(e.g. drops, re-ordering, delays) that are diÆcult to
reproduce reliably in a live network. Furthermore, by
capturing traÆc traces of live traÆc injected into the
simulation environment, visualization tools may be em-
ployed to evaluate the end system's dynamic responses.
In the converse situation, network element behavior
(e.g., a queueing or packet scheduling discipline) may
be evaluated in relation to live traÆc generated by real-
world end stations. Such simulations are useful in iden-
tifying undesirable network element behavior prior to
deployment in live networks.

The ns emulation facility is currently under develop-
ment, but an experimental version has already proven
useful in diagnosing errors in protocol implementation.
For example, researchers at UC Berkeley have devel-
oped the MediaBoard, a shared whiteboard applica-
tion using a version of the SRM protocol supported in
the MASH toolkit [27]. The simulator is placed be-
tween groups of live end stations communicating using
SRM. Multicast traÆc passing between groups must
traverse the simulator, and is subject to the dynam-
ics of its simulated network. Visualization of traces
taken within the simulation environment reveals end
station retransmissions triggered by packets dropped
or delayed within the simulated network. This use of
emulation has helped to pinpoint time-dependent be-
haviors of the MediaBoard that are otherwise very dif-
�cult to diagnose.
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3.3 Scenario Generation

In ns, a simulation scenario de�nes the input con-
�guration for a simulation run. Scenarios are made
up of several components: a network topology, includ-
ing the physical interconnects between nodes and the
static characteristics of links and nodes, traÆc models

which de�ne the network usage patterns and locations
of unicast and multicast senders, and test generation,
which creates events such as multicast group distribu-
tions (receivers joining and leaving) and network dy-

namics (node and link failures) designed to stress an
implementation. Automated generation of scenarios is
important in the evaluation of protocol robustness. It
allows researchers to cover much larger portions of the
operational space than is possible through manual re-
con�guration. Furthermore, by subjecting competing
protocols to identical scenarios, meaningful compara-
tive studies can be performed.

Topology Ns supports both pre-de�ned and auto-
matically generated network topologies. Pre-de�ned
topologies may be created manually or chosen from a
topology library ranging from simple topologies to the
topologies of real operational networks. Tools that au-
tomatically generate topologies provide the ability to
create random topologies according to a set of speci-
�ed parameters such as degree of connectivity, levels of
hierarchy, and other features. Rather than create our
own topology generation tools from scratch, we sup-
port the Georgia Tech Internetwork Topology Models
(GT-ITM) package which creates at random networks
using a variety of edge distribution models, as well as
hierarchical and transit-stub networks. In addition,
the tiers system can be used to create three-level hier-
archical topologies similar to the transit-stub GT-ITM
topologies [7].
The key challenge in topology generation is coming

up with topologies that embody relevant characteris-
tics of real networks. Once accomplished, the ns frame-
work easily allows simulation of any generated topol-
ogy. Hence, if new and better topology generation tools
are developed in the future, using their output in ns
likely requires at most a simple format conversion pro-
gram.

TraÆc Models TraÆc generation support or load

libraries provide a synthetic application workload
model. For example, application traÆc generation, call
patterns, and multicast group membership dynamics
may be included in a load library. As with the topol-
ogy libraries, load libraries may be derived from em-
pirical data, analytic models, or generated randomly to

allow \what-if" investigation of particular parts of the
operating region, even if that region is not currently
observable in operational networks.

Ns provides a wide variety of source models that can
be used in conjunction with both unicast and multicast
transport protocols. At present, supported protocols
include reliable delivery transport (e.g. several TCP
variants, SRM), and unreliable transports with vari-
ous semantics (e.g. RTP and UDP). For simulations
of TCP, both bulk data and interactive sources are
available. The former can model an FTP application
while the latter, based in part on a model developed
from traÆc traces [8], models Telnet-like applications.
We simulate web traÆc with models based on Mah's
measurements [24]. Other source models are available
for non-ow controlled applications. These include a
constant bit rate source, on-o� sources using either ex-
ponential or Pareto distributions (the latter useful in
generating self-similar traÆc [37]), and a source that
generates traÆc from a trace �le.

The composable framework of ns makes adding new
traÆc models fairly easy, and encourages construction
of compound models out of the individual component.
In simulations of Receiver-driven Layered Multicast
(RLM), for example, a multi-layered video source was
created by combining several CBR streams [28]. A
similar approach was used to incorporate correlations
of burstiness across layers in another study involving
layered video [4].

In creating a simulation scenario, specifying individ-
ual traÆc sources generated by the source models pro-
vided by ns is not always suÆcient. Instead, in large
network simulations, con�guring a set of sources that
in the aggregate generate suitable background traÆc
with desired characteristics (e.g., aggregate bandwidth,
burstiness, self-similarity, etc.) is a challenge. Develop-
ing tools to help users synthesize simulation scenarios
is an area of ongoing work in the VINT project.

Test Generation Choosing an appropriate set of
test conditions for a simulation experiment is never
simple, and evaluating the correctness of a protocol
can be a daunting task. We developed a framework
for Systematic Testing of Protocol Robustness by
Evaluation of Synthesized Scenarios (STRESS) [19,
20] in order to reduce the e�ort needed to identify
pathological cases of protocol behavior. As the name
implies, this framework integrates systematic synthe-
sis of test scenarios with the VINT simulation environ-
ment of ns. We are in the process of developing auto-
matic test generation algorithms for multicast proto-
cols. These methods were applied to multicast routing
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protocol studies in ns. Several design errors were dis-
covered and corrected with the aid of STRESS; the
detailed results are presented in [19].
Future work in this area will consider the e�ect of a

wider range of network failures on multicast routing.
We will also investigate systematic methods for perfor-
mance evaluation and sensitivity analysis of end-to-end
protocols such as multicast transport. In addition, we
plan to use the emulation interface in ns to conduct
systematic conformance testing and performance pro-
�ling of actual protocol implementations.

4 Software Architecture

The ns software is constructed in a way intended to
promote extension by users. The fundamental ab-
straction provided by the software architecture is \pro-
grammable composability". In this model, simulation
con�gurations are expressed as a program rather than
as a static con�guration or through a schematic cap-
ture system. A simulation program composes objects
dynamically into arbitrary con�gurations to e�ect a
simulation con�guration. By adopting a full edged
programming model for simulation con�guration, the
experimentalist is free to extend the simulator with
new primitives or \program in" dynamic simulation
\event handlers" that interact with a running simula-
tion to change its course as desired.
Rather than adopt a single programming language

that de�nes a monolithic simulation environment, we
have found that di�erent simulation functions require
di�erent programming models to provide adequate
exibility without unduly constraining performance.
In particular, tasks like low-level event processing or
packet forwarding through a simulated router require
high performance and are modi�ed infrequently once
put into place. Thus, they are best served by an imple-
mentation expressed in a compiled language like C++.
On the other hand, tasks like the dynamic con�gura-
tion of protocol objects and the speci�cation and place-
ment of traÆc sources are often iteratively re�ned and
undergo frequent change as the research task unfolds.
Thus, they are best served by an implementation in a
exible and interactive scripting language like Tcl [30].
To this end, ns exploits a split programming model,

where the simulation kernel|i.e., the core set of high-
performance simulation primitives|is implemented in
a compiled language (C++) while simulations are de-
�ned, con�gured, and controlled by writing an \ns sim-
ulation program" expressed in the Tcl scripting lan-
guage. This approach can be a boon to long-term pro-
ductivity because it cleanly separates the burden of

simulator design, maintenance, extension, and debug-
ging from the goal of simulation itself|the actual re-
search experiments|by providing the simulation pro-
grammer with an easy to use, recon�gurable, and pro-
grammable simulation environment. Moreover, it en-
courages a programming style that leads to an impor-
tant separation of mechanism and policy: core objects
that represent simple and pure operations are free of
built-in control policies and semantics and can thus be
easily reused.

In our split programming model, �ne-grained simu-
lation objects are implemented in C++ and are com-
bined with Tcl scripts to e�ect more powerful, higher-
level \macro-objects". For example, a simulated router
is composed of demultiplexers, queues, packet sched-
ulers, and so forth. By implementing each primitive in
C++ and composing them using Tcl a range of routers
can be simulated faithfully. We can string together
the low-level demultiplexers, queues, and schedulers to
model an IP router perhaps with multicast forwarding
support, or instead arrange them into a con�guration
that models a high speed switch with a new schedul-
ing discipline. In the latter case, the switch could be
easily extended with protocol agents (implemented en-
tirely in Tcl) that modeled an experimental signaling
protocol. Performance also guides our split program-
ming model. Low-level event-level operations like route
lookups, packet forwarding, and TCP protocol process-
ing are implemented in C++, while high-level control
operations like aggregate statistics collection, modeling
of link failures, route changes, and low-rate control pro-
tocols are implemented in Tcl. Careful design is nec-
essary to obtain a desirable trade-o� between perfor-
mance and exibility, and this division often migrates
during the course of a protocol investigation.

This composable macro-object model is naturally
expressed using object-oriented design, but unfortu-
nately, at the time we designed ns, Tcl did not pro-
vide support for object-oriented programming con-
structs nor did it provide very e�ective programming
constructs for building reusable modules. Thus, we
adopted an object-oriented extension of Tcl. Of the
several Tcl object extensions available at the time, we
chose the Object Tcl (OTcl) system from MIT [36] be-
cause it required no changes to the Tcl core and had
a particularly elegant yet simple design. We further
adopted a simple extension to OTcl called TclCL (for
Tcl with classes) that provides object sca�olding be-
tween C++ and OTcl and thereby allows an object's
implementation to be split across the two languages in
congruence with our split programming model [27].

With the OTcl programming model in place, each
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macro-object becomes an OTcl class and its complex-
ity is hidden behind a simple-to-use set of object meth-
ods. Moreover, macro-objects can be embedded within
other macro-objects, leading to a hierarchical architec-
ture that supports multiple levels of abstraction. As an
example, high-level objects might represent an entire
network topology and set of workloads, while the low-
level objects represent components like demultiplexers
and queues. As a result, the simulation designer is
free to operate at a high level (e.g., by simply creat-
ing and con�guring existing macro-objects) at a mid-
dle level (e.g., by modifying the behavior of an existing
macro-object in a derived subclass) or at a low level of
abstraction (e.g., by introducing new macro-objects or
split objects into the ns core). Finally, class hierarchies
allow users to specialize implementations at any one
of these levels, for example extending a \vanilla TCP"
class to implement \TCP Reno". The net e�ect is that
simulation users can implement their simulation at the
highest level of abstraction that supports the level of
exibility required, thus minimizing exposure to and
the burden associated with unnecessary details.

5 Research with Ns

Network research simulations can often be categorized
into one (or more) of a few broad themes. These in-
clude selecting a mechanism among several options, ex-
ploring complex behavior, and investigating unforeseen
multiple protocol interaction. This section uses exam-
ples from the broad base of ns-based simulations in
the networking community to demonstrate instances
of each theme.

Selecting a Mechanism As in most design activ-
ities, much of the time spent in protocol design, re-
design, and debugging concerns evaluation of the var-
ious alternatives to accomplishing a goal. Ns has seen
broad use in devloping TCP variants and extensions,
exploring reliable multicast protocols, and in consider-
ing packet scheduling algorithm in routers.

As an example, ns has been used to explore sev-
eral TCP variants and extensions such as selective
acknowledgments [13], forward acknowledgments [26],
explicit congestion noti�cation (ECN) [14], and pac-
ing [35]. These e�orts were aided by the existance of a
simulator-speci�c TCP implementation. By omitting
application-speci�c baggage such as memory manag-
ment and IP fragmentation, ns users were able to fo-
cus on the research issues such as packet retransmission
policies and throughput.

Exploring Complex Behavior Complex behavior
often takes the form of unexpected self-organization
of dynamic systems. Examples include synchroniza-
tion of periodic network traÆc such as routing updates,
TCP \ACK compression" in asymmetric or congested
networks, undesired or unpredicted di�erential treat-
ment of TCP ows due to RTT variations, contention
for bandwidth reservations, and \ACK implosion" for
large-scale reliable multicast protocols. In each of these
domains, simulation has been a useful tool in helping
to identify and understand these phenomena.

Error recovery in the Scalable Reliable Multicast
(SRM) [17] is an example of exploration of complex
behavior with ns. SRM was designed to support reli-
able group communication for large group sizes. It uses
a probabilistic-based NACK protocol to achieve relia-
bility. A receiver detecting a loss multicasts negative
acknowledgement to the group. Each group member
who has the missing data prepares to repair the error.
To avoid repair implosion (everyone sending the repair
at once), repairs are delayed by a random amount por-
portional to the estimated distance between the par-
tipicants. While the original simulations of SRM were
done in a stand-alone simulation tool, an SRM imple-
mentation has been added to ns, where it has been
widely used to study SRM recovery behavior over a
wide range of topologies [32] and variants [34]. This
research was enabled by the public availalbility of of
SRM in a well-documented simulator.

Comparing Research Results: A common re-
search challenge is comparing a new protocol design
against existing protocols. Comparisions of full proto-
cols are often diÆcult because they may require a par-
ticular operating system or may not be widely avail-
able. By providing a publically available simulator
with a large protocol library, ns has become an ideal
\virtual testbed" for comparing protocols.

The reliable multicast community have used ns
widely for protocol comparison. In addition to the
SRM variants previously described, H�anle used ns to
compared the Multicast File Transfer Protocol [18],
and DeLucia considered representative-based conges-
tion control [9].

Multi-protocol interactions Multiple protocol in-
teractions include the impact of protocol operation at
one layer upon another layer (e.g. http on TCP, reser-
vations on datagram delivery) or the interaction of un-
related protocols (e.g. the e�ect of uncontrolled traÆc
sources on congestion-controlled traÆc ows or routing
stability on transport layer performance). The prob-
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lem with studying protocol interactions is that it re-
quires twice the e�ort of studying a single protocol:
the designer must understand and implement proto-
cols at all the relant layers. Ns reduces this e�ort by
providing a validated library of important protocols.
RED and TCP snooping are two examples where

ns greatly aided protocol studies exploring interac-
tions between TCP and router queueing policies (RED)
and TCP and wireless networking (Snoop). Random
Early Detection (RED) queue management suggests
that routers should detects incipient congestion (be-
fore running out of bu�er capacity) and signal the
source [16]. Early work on RED begain on an ancestor
of ns; RED is now a standard part of the simulator.
Snooping proposes that TCP performance can be im-
proved if routers replay TCP segements lost due to
transmission failure over a wireless hop [5]. Both of
these approaches bene�tted from the rich ns protocol
library.

Protocols Investigated With Ns
(sidebar)

Ns has been used to develop and investigate a number
of protocols:

� TCP behavior: selective acknowlegements, for-
ward acknowledgments, explicit congestion noti-
�cation, rate-based pacing, over asymmetric links
(satellite)

� router queuing policies: random early detection,
explicit congestion noti�cation, class based queue-
ing

� multicast transport: Scalable Reliable Multicast
(SRM) and variants (RPM, scalable session mes-
sages), PIM variants, router support for multicast,
congestion control, protocol validation and test-
ing, reliable multicast

� multimedia: layered video (RLM), audio and
video quality-of-service, transcoding

� wireless networking: SNOOP and split-connection
TCP, multi-hop routing protocols

� protocol response to topology changes

� application-level protocols: web cache consistency
protocols

References to some speci�c papers can be found
in the text and at the web page http://www-
mash.cs.berkeley.edu/ns/ns-research.html. As an ex-
ample of ns's use in networking community, it was the
most commonly used simulator at SIGCOMM '98.

6 Evaluation

The VINT e�ort has bene�ted from the contributions
of a wide number of users. The project itself spans four
geographically-dispersed groups of devlopers, and the
user community includes more than 200 institutions
world-wide (based on messages posted to the mailing
list). Ns includes a large amount of code contributed
from this user community. Currently, we have two
mechanisms for adding contributed code from users:
we can point to the contribution on a \Contributed
Code" web page, or we can incorporate the contributed
code into the main ns distribution (typically with doc-
umentation and a validation test program). Code in-
tegrated into the main distribution will track ns as it
evolves; experience stresses the importance of the au-
tomated validation tests in this process.
Although the ns user community has been steadily

growing, there will always be times when a researcher
�nds it more convenient to write stand-alone code
or to choose an alternative general-purpose simulator.
A custom simulator can address exactly the problem
faced by a researcher. Even though ns's abstraction
techniques allow two orders of magnitude scaling, a re-
searcher's custom simulator can get exactly the correct
scaling behavior. Finally, a new simulator will avoid
the cost of learning ns. However, we have found that
researchers often underestimate the amount of infras-
tructure required to build a new simulator and inter-
pret its results.
Wide use of a common simulation platform provides

some very serendipitous e�ects, however. By provid-
ing a rich collection of alternatives and variants for
frequently used functionality (e.g. for TCP and queue-
ing variants), ns encourages researchers to incorporate
these alternatives into the parameter space of their own
simulations. Without the infrastructure of ns or a simi-
lar environment, it seems unlikely researchers would be
able to cover such a rich parameter space due to the
additional cost of developing such infrastructure. This
is particularly true of experimental new approaches.
For example, RED queue management in ns has been
widely used in a range of simulations well before it was
standardized and available in products. This availabil-
ity has helped understanding and acceptance of RED
and helped other researchers anticipate how their pro-
tocols will behave in future networks.
A disadvantage of ns is that it is a large system with

a relatively steep initial learning curve. Availablity of
a tutorial (contributed by Marc Greis) and continuing
evolution of the ns documentation has improved the
situation, but ns's split programming model remains a
barrier to some developers. As described in \Software
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Architecture", the choice of the �ne-grain object de-
composition is intentional because it allows two levels
of programming. Simple scripts, topology layout, and
parameter variation can often be done exclusively in
OTcl. Although C++ is required to implement most
new protocols, ns's object-oriented structure makes it
fairly easy to implement variants of existing protocols.
For completely new protocols, the large set of existing
modules promotes re-use by the advanced programmer
as is evident in ns' existing protocols and classes.

7 Related Work

Network Simulators Network simulation has a
very long history. Ns itself is derived from REAL [22],
which is derived from NEST [11]. Although we cannot
list all relevant network simulators here, this section
describes distinguishing features of network simulators
and compares prominent examples with ns.
Simulators have widely varying focuses. Many tar-

get a speci�c area of research interest such as a partic-
ular network type or protocol like ATM or PIM mul-
ticast. Others, including ns, REAL, OPNET [10], and
INSANE [25] target a wider range of protocols. The
most general of these provide a simulation language
with network protocol libraries (e.g. Maisie [3] and
OPNET [10]). Very focused simulators model only the
details relevant to the developer.
The engine of ns and other network simulators is a

discrete event processor. Several complementary ap-
proaches have been taken to improve accuracy, per-
formance, or scaling. Some simulators augment event
processing with analytic models of traÆc ow or queue-
ing behavior (for example, OO [29] and uid network
approximations [23]) for better performance or accu-
racy.
Parallel and distributed simulation is a second way

to improve performance. Several simulators support
multiprocessors or networks of workstations [22, 3, 31].
Although ns is focused only on sequential simulation,
the TeD e�ort has parallelized some ns modules [31].
Abstraction is a �nal common approach to improv-

ing simulator performance. All simulators adopt some
level of abstraction when choosing what to simulate.
FlowSim was the �rst network simulator to make this
trade-o� explicit [2]. As discussed in \Abstracting Sim-
ulation", ns supports several levels of abstraction.
A number of di�erent simulation interfaces are pos-

sible, including programming in a high-level scripting
language, a more traditional systems language [3], or
sometimes both [10]. Some systems focus on allow-
ing the same code to run in simulation and a live net-

work (for example, x-Sim [6] and Maisie [3]). Most
systems augment programming with a GUI shell of
some kind Ns provides a split-level programming model
where packet processing is done in a systems language
while simulation setup is done in a scripting language.
Nam [12] provides visualization output and is currently
being enhanced to support simple scenario editing.

Network Emulation. Early work in network emu-
lation included the use of \akeways" (gateways that
could alter or drop packets) and were used for early
TCP/IP tests. More recent work has included spe-
cial purpose stand-alone network emulators support-
ing packet delays and drops [1, 33]. These systems are
usually implemented as kernel drop-in modules that
intercept the IP layer packet forwarding path and thus
appear to end stations as routers. Their capabilities
are generally limited to simple packet manipulations
and don't provide for interference from simulated cross
traÆc. Moreover, these systems do not include a gen-
eral simulation capability as provided by ns.

8 Conclusions

Simulation in network research plays the valuable role
of providing an environment in which to develop and
test new network technologies without the high cost
and complexity of constructing testbeds. While not a
complete replacement for testbeds, a standard frame-
work for simulation used by a diverse set of researchers
increases the reliability and acceptance of simulation
results. Despite the bene�ts of a common framework,
the network research community has largely devel-
oped individual simulations targeted at speci�c studies
due to the considerable e�ort required to construct a
general-purpose simulator. Because of the special pur-
pose nature of such simulators, studies based on them
often do not reect the richness of experience derived
from experimentation with a more extensive set of traf-
�c sources, queuing techniques, and protocol models.

The VINT project, using ns as its simulator base
and nam as its visualization tool, has constructed a
common simulator containing a large set of models for
use in network research. By including algorithms still
in the research phase of development, users of the sim-
ulator are able to explore how their particular work in-
teracts with these future techniques. Furthermore, be-
cause of the many protocols and models included with
the system, researchers are often able to modify and
construct their own simulations based on the provided
models with relative ease. In several cases, modules
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developed outside the VINT project have been incor-
porated as a standard component to the simulator. We
intend to further foster such contributions, and expect
them to increase in the future.
While the VINT project so far has been relatively

successful in achieving its goals, it remains to be seen
how well the VINT project and the ns simulator will
address the challenges of building on this success. The
VINT project is an ongoing experiment in providing
and using a multi-protocol simulator that allows re-
searchers in the network research community to more
easily build on each others' work. Future challenges for
the VINT project include the development of mecha-
nisms for the successful integration of code contributed
by the user community, reducing the learning curve for
using ns, further developing tools for large-scale simu-
lations with a diverse traÆc mix, and providing tools
for newer areas of research such as mobility and higher-
level protocols.
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