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Abstract—Extensive research has been performed on improv-
ing TCP performance in multi-hop wireless networks, but there
have been relatively few experimental evaluations of this work.
To make it easier to conduct research in this area, we are
releasing WiFu, an open-source toolkit for developing experimen-
tal wireless transport protocols. WiFu provides for user-space
development of reliable transport and rate control algorithms,
greatly simplifying the implementation effort required. In this
paper, we describe the architecture of the WiFu toolkit, which
decomposes transport protocols into smaller components that
enable rapid, plug-and-play development of new variants. We
present experiments to demonstrate that the performance of
WiFu compares favorably to the Linux kernel for wireless
networks. We illustrate the utility of WiFu by using it to conduct
experiments with several wireless transport protocols, and show
that the performance of some protocols differs significantly from
previously reported results.

I. INTRODUCTION

It is well known that application throughput can suffer in
multi-hop wireless networks, due to interactions between the
IEEE 802.11 MAC and TCP [1], [2], [3]. A wide range of
research addresses this issue by extending or redesigning TCP,
however relatively few solutions have been implemented and
tested in wireless networks. This is somewhat understandable,
since these solutions involve changes to the transport layer of
wireless hosts and routers; modifying the operating system
is time consuming and difficult. However, the scarcity of
experimental evaluations severely limits the impact of current
research on future wireless networks.

To address this problem, we are releasing WiFu1, an open-
source, user-level toolkit for experimental wireless transport
protocols. Developing in user space rather than kernel space
allows for rapid implementation and testing of new transport
protocols, makes it easier to manage the code, and enables
researchers to contribute code without needing to have the
expertise to develop in the kernel. Once a protocol has
demonstrated promise, it can then be moved into the kernel
for deployment. To allow for a wider range of experimental
designs, WiFu also enables cross-layer interactions, providing
convenient user-level mechanisms for manipulating packets at
routers and interacting with modified network drivers through
the Linux /proc interface.

A number of projects have ported the networking stack
directly to user space or created user-level implementations
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1From a combination of WiFi and Kung Fu.

of TCP [4], [5], [6]. However, in many cases this work is
not flexible enough for radical transport protocol designs or is
not fast enough to compete with the kernel. A key innovation
in WiFu is that it separates transport protocol functionality
into major components, providing flexibility while maintain-
ing performance. By separating the transport protocol into
components we can “plug-and-play” different mechanisms,
allowing testing of radically different designs with relatively
small amounts of new code.

In this paper we describe the architecture of WiFu, which
consists of two parts: (a) WiFu Transport, which provides a
framework for developing end-to-end protocols and (b) WiFu
Core, which runs on every node in the network and enables
hop-by-hop control over packets and cross-layer interactions.
Both parts use a modular, event-driven architecture, allowing
for greater flexibility than a traditional networking stack. Our
contributions in this work include:

• A user-space framework for transport protocol design
that is flexible, scalable, and has performance that is
competitive with the Linux kernel. Our experiments show
that application goodput in WiFu Transport is as fast as
the Linux kernel for one-hop, two-hop, and three-hop
wireless paths, and can saturate a 10 Mbps and 100 Mbps
Ethernet. Packet interception within WiFu Core imposes
negligible overhead for large file transfers, providing
packet interception at speeds up to 935 Mbps.

• A clean-slate implementation of TCP that is sepa-
rated into components, demonstrating the viability of
component-based transport protocol development. While
other research has investigated decomposing TCP using
micro-protocols [7], we believe ours is the first to show
packet-level fidelity with TCP while also providing equiv-
alent performance with the kernel. Packet-level traces of
our decomposed version of TCP are nearly identical to
traces produced by the kernel.

• Investigation of two proposed TCP modifications for
wireless networks, adaptive pacing [8] and delayed ACKs
[9]. Our experiments show that adaptive pacing increases
goodput and fairness for TCP, but only when multiple
flows are active. Additional experiments show that de-
layed ACKs improve goodput more than was previously
reported. We also describe our experience using WiFu
to implement an experimental, hybrid transport protocol
that combines TCP reliability with measurement-based
rate control.



Overall, our results show that WiFu provides a flexible
environment for user-space transport protocol development on
an unmodified Linux kernel, promotes code reuse, maintains
good performance and provides scalability.

II. DESIGN GOALS

Our primary purpose in creating WiFu is to enable rapid de-
velopment of novel transport protocols for wireless networks.
In support of this vision, our design has been guided by the
following goals:

Flexibility. Researchers in wireless networks want to create
radical new transport protocol designs, rather than being
constrained by existing conventions. WiFu meets this goal
by using protocol decomposition, so that a transport protocol
consists of several components, such as a connection manager,
reliable transfer, and a congestion controller. A developer can
create a new protocol by mixing existing components with
new ones, and can also override methods to create new func-
tionality. Furthermore, WiFu supports multiple, simultaneous
transport protocols.

Code Reuse. Encouraging code reuse helps developers
rapidly create new protocols by avoiding work that is not
unique to their research. One of the reasons why using a
simulator to evaluate new research is so inviting is because
a good network simulator offers a framework that provides
event handling, timers, packet formats, and other convenient
functionality that a developer doesn’t want to have to re-
invent each time. In WiFu, we replicate this experience by
providing similar functionality and by orienting development
around design patterns [10].

Performance. Transport protocols in user space should be
able to achieve performance equal to that of the Linux kernel.
This is important for protocol developers because they are
often trying to demonstrate improved performance relative to
a particular version of TCP that is used by the kernel. Previous
efforts to port transport protocols to user space have focused
on flexibility or teachability to the exclusion of performance.
We engineer WiFu so that it is as fast as possible, without
sacrificing the goal of flexibility. We meet this goal in part by
utilizing an event-driven architecture and raw sockets.

Scalability. In addition to performance, transport protocol
developers are often concerned with fairness among multiple
connections. Thus, our design of WiFu includes a socket
interface so that multiple applications can utilize the transport
stack simultaneously, and where threading is used we ensure
thread safety. WiFu also allows multiple transport protocols to
be operating simultaneously, so that performance and fairness
can be directly compared.

We note that it can be difficult to achieve fast and scalable
performance while also trying to provide a flexible environ-
ment for rapid development. We do not strictly prioritize one
goal over the other, but seek to develop a toolkit that balances
these concerns while pushing for performance optimizations
wherever possible.
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III. THE WIFU SYSTEM

Figure 1 shows the basic operation of the WiFu toolkit. To
meet the diverse needs of transport protocol designers working
in the wireless space, WiFu consists of two parts: WiFu
Transport and WiFu Core. WiFu Transport provides a flex-
ible environment for traditional end-to-end transport protocol
designs, including the BSD socket API so that developers can
test their protocols with standard applications. One focus of
WiFu Transport is on enabling protocol decomposition, so that
radical new designs can be easily created by combining both
existing and newly-designed reliability and congestion control
components. WiFu Core enables cross-layer interactions on
each hop of a connection, by providing a simple method to
intercept and modify packets. This allows for strategies as
diverse as per-hop reliability, collecting delay feedback from
the driver, or pacing packets to avoid collisions with other
wireless devices. All WiFu code is object-oriented and written
in C++. The following sections describe the architecture in
more detail.

A. WiFu Transport

Figure 2 shows the WiFu Transport architecture, which
includes a back-end daemon that implements an event-driven
framework for transport protocol development, plus a front-
end library that provides a socket API for linking to applica-
tions. We describe the major pieces of the architecture below:

1) Event Dispatcher: The central part of the WiFu Trans-
port architecture is an event-driven dispatcher, which delivers
events among the different modules. An event can include the
arrival of a packet, a socket call, a timer firing or an indication



that data has arrived in the send buffer. WiFu ensures that
once a protocol receives a new packet it is handled completely
before processing the next packet or event. The dispatcher and
the event-processing modules each run in a separate thread
with thread-safe queues.

2) Protocol Decomposition: WiFu allows a developer to
decompose a transport protocol into a set of components,
similar to the decomposition used in Click [11] and CTP [7],
[12]. This provides a tremendous amount of flexibility, because
a protocol designer can easily swap components around to
create hybrid transport functionality. For example, the stan-
dard TCP congestion control algorithm can be replaced with
a rate-based controller. WiFu currently includes connection
management, reliable transfer, congestion control, and rate
limiter components.

In order to further divide transport protocol components
into smaller reusable pieces, WiFu Transport uses the state
design pattern [10]. To create a new protocol component, a
developer simply creates a new state machine that re-uses
existing states or defines new ones, along with associated
methods. Modifying a protocol can be as simple as changing
one of its states.

3) Network Interface: The network interface uses raw
sockets to provide a high speed mechanism for sending and
receiving IP packets. This avoids any overhead associated with
running on top of UDP, and also enables us to re-use the
kernel’s TCP and IP packet headers. To prevent the kernel from
processing WiFu packets, we use transport protocol numbers
that are not currently in use by the Linux kernel.

The network interface supports logging of packets in pcap
format, which allows Wireshark to read WiFu traces for easier
protocol debugging and visualization. WiFu also includes a
mock network object that provides complete control over an
emulated network, such as dropping packets according to
specified percentages. Packets can also be dropped or delayed
based on sequence and ACK numbers, allowing protocols to
be tested for correctness.

4) Timer Manager: The timer manager provides the con-
venience of handling any event timers for transport protocols.
Modules can create new timers and can also cancel timers.

5) Socket API: WiFu Transport implements a subset of
the standard BSD socket API inside a static library, allowing
developers to easily port applications to use a new transport
protocol developed in WiFu. The front-end socket library
communicates with the back-end using a UNIX socket. Note
that some socket calls can be blocking, and the front-end
library handles this via asynchronous communication with the
back-end. The socket API can support multiple concurrent
applications and is thread-safe.

The socket API in WiFu Transport supports the following
socket calls: socket(), bind(), listen(), accept(), connect(),
send(), sendto(), recv(), recvfrom(), getsockopt(), setsockopt(),
and close(). WiFu does not support all functionality in each
of these calls, but contains the bulk of what a typical ap-
plication uses, with some less-used options and flags slated
for future development. We have extended the getsockopt()
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and setsockopt() functions to configure transport protocols,
since researchers may devise new parameters. This expedites
experimentation as it is simply an extra function call at the
application level and some minor work in the back-end to use
any socket option data.

B. WiFu Core

In designing WiFu Core, our goal is to provide an efficient
and robust method for intercepting and processing IP packets,
while still supporting user-space development on standard
Linux kernels. Note that the Click modular router [11] can
forward 333,000 64-byte packets per second, but only by
using a specialized kernel module and modified device drivers.
We want to achieve the best performance possible on an
unmodified Linux system. Click also intercepts packets at the
driver level, whereas we want to capture them at the IP level.
This allows developers to focus on reliability and rate control,
rather than routing.

To meet this goal, WiFu Core uses the Linux iptables
software with the netfilter interface to intercept packets
at each node in the wireless network. We use a feature of
iptables that allows a rule to specify a queue in which
matching packets are placed. WiFu can then read packets from
the queue, modify them, reorder them, or deliver the packets
back to the kernel for continued processing.

The WiFu Core architecture is shown in Figure 3. The
netfilter interface reads the filter specifications from a
configuration file, adds these rules to iptables, then reads
packets from the netfilter queues. WiFu uses the IP
protocol field to determine which handler to call for each inter-
cepted packet, then passes the packet to the appropriate handler
method – input, output, forward, prerouting, or postrouting –
depending on where in the IP forwarding process the packet
was intercepted. To add a new handler, a developer only has to
add one line to a configuration file and then define a handler
with those methods he wants to support.

Once a handler is finished with a packet, it delivers a verdict
to the kernel through the netfilter interface. The packet
can be either dropped or accepted for further processing by
the kernel, for example to be delivered to an application or
routed over the network.

IV. PROTOCOL DECOMPOSITION

To demonstrate the feasibility and desirability of protocol
decomposition, we have used WiFu Transport to develop a
clean-slate implementation of TCP based on the RFC speci-
fications, but separated into individual components. Network
researchers have commonly believed that TCP reliability and



congestion control could be separated, to provide greater
flexibility for new variants. Furthermore, research has shown
that TCP-like functionality can be composed of even smaller
components, called micro-protocols [7]. However, we believe
our research is the first to demonstrate a nearly-complete,
decomposed version of TCP that also maintains a very high
degree of fidelity to TCP standards.

A major benefit that comes from decomposing TCP is that
it allows these basic components to be easily extended or
replaced by other protocol functionality. This is particularly
important for transport layer solutions that focus only on
one portion of TCP, for example, a new congestion control
algorithm. By using a component framework, we can evaluate
the integration of congestion control improvements with the
rest of TCP’s reliability and connection management features.

A. Challenges

At first glance, the division of TCP functionality into
components seems trivial. Connection management handles
connection setup and teardown. Reliability ensures that all data
is delivered to the application in order. Congestion control
determines the speed at which data is sent. A coordinating
protocol composes these three into a functioning whole, and
includes some generic event and packet validation and pro-
cessing.

However, a number of challenges become apparent on closer
examination. First, there are numerous versions of TCP that
have been specified and implemented, including Tahoe, Reno,
Vegas, BIC, Cubic and more. As a proof of concept, we
focus on TCP Tahoe in our implementation. Second, TCP
is complex. We concentrate on the major concepts such as
connection management, reliability, and congestion control.
Our implementation supports the time stamp option [13],
slow start, congestion avoidance, fast retransmit, and duplicate
ACKs. We do not implement the functionality behind the
RST, PSH, and URG control bits. Third, there is no clear
standard for TCP Tahoe, only a collection of RFCs [14],
[15], [16], [17], [18], [19], [13], [20], [21] that propose
various pieces and improvements to TCP. We have taken these
RFCs and composed a working specification for what we
understand to be TCP Tahoe, and by comparing to what has
been implemented in ns-2 [22].

The fourth and biggest challenge is knowing how to sep-
arate TCP logic into components. During development, we
discovered a number of interesting questions, including the
following.

1) Which component should send data?: This is a tricky
question because all components need to be involved with
sending data. The connection manager needs to send SYN,
FIN, and ACK segments to start or end a connection. The
reliability manager needs to know that data is being sent so
that it may set timers and update its internal state to account for
the outgoing data. Congestion control is the only component,
however, that knows how much data may be sent and how
fast. Thus we have the congestion control component send

data, and each time this generates an event that notifies the
reliability component for tracking.

2) Which component should resend data?: In TCP, there
are two reasons why data needs to be resent: (1) a timer
fires or (2) three duplicate acknowledgements are received. It
makes sense that the reliability component handle both, since
it sets timers and handles acknowledgements. However, the
congestion control component is the one that sends data and
it needs to update its state when loss is detected. Accordingly,
the reliability component handles detecting loss and enqueues
a resend event. The congestion control module processes this
event by setting its state accordingly and then resends data
according to its sending policy.

3) Which component should check whether a received
packet is valid?: TCP determines whether a received packet
is valid by ensuring that it contains data within the receive
window or that it acknowledges something sent but not yet
acknowledged. These checks are scattered throughout the
specifications, and in some cases a general validity check is
superseded by a more specific check by a particular com-
ponent. Our solution is to make the most generic validation
checks as soon as possible in the protocol object. If the packet
passes this check, the protocol delegates the event to each of
the components in turn. This means that a component may
duplicate some validation checks, however this ensures that
each component remains independent.

4) How do independent components share state?: There are
numerous elements of TCP state that serve multiple purposes.
For example, send buffer variables and the receive window
variable are all used both for reliability and congestion control
purposes. Our solution is to ensure that all components have
their own copy of any information it needs to function. Com-
mon variables may be composed into common base classes.
Variable state may be updated via events. This solution ensures
component independence and re-uses the event architecture so
components may update their internal state.

5) Which component should be responsible for sending
ACK segments?: The connection manager and the conges-
tion control components both send segments that need to
be acknowledged. For the connection manager, an ACK bit
indicates a change in state, whereas the reliability component
uses the ACK bit to ensure data arrives to the application. Thus
the connection manager sends ACK segments when opening or
closing a connection, and the reliability manager sends ACK
segments in response to data.

B. Validation

To validate that our implementation of Tahoe is correct, we
compare with packet traces taken from the ns-2 simulator,
since it is one of the only available versions of TCP that
contains the Tahoe variant. While we have examined a large
number of packet traces, we do not show them all here,
due to space considerations. WiFu includes a mock network
module in a testing suite that rigorously examines many
aspects of TCP Tahoe under various loss scenarios. Thus, we
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Fig. 4. WiFu TCP and ns-2 Trace Comparison: One Drop

are confident that our TCP implementation is correct to the
extent we have implemented it.

One set of scenarios we use are the loss scenarios in the
simulations conducted by Fall and Floyd [23]. Figure 4 shows
a trace of scenario where one packet is lost during slow start. In
the WiFu TCP trace, the first square for a particular sequence
number shows when a packet is sent and the second one
shows when a packet is received. In the ns-2 TCP trace, the
first square shows when a packet is queued and the second
one shows when a packet leaves the queue. The small dots
indicate when an ACK arrives at the sender. In this scenario,
the congestion window should be reduced to one MSS, the
slow start threshold should be set to one-half of the number
of bytes in flight, and TCP should begin again with slow
start [17]. Furthermore, because the slow start threshold is
halved, this illustrates the correct transition from slow start to
congestion avoidance.

We note that WiFu TCP acts nearly identically to ns-
2 in this trace. ns-2 TCP handles the transition from slow
start to congestion avoidance slightly different that WiFu
TCP due to the congestion window and MSS being in terms
of packets, not bytes. WiFu is more realistic on this point.
Another small difference is that when detecting loss WiFu
TCP sets the slow start threshold to one-half of the number
of bytes currently in flight [17], while ns-2 TCP sets it to
0.5 ∗min(congestionwindow, receivewindow) [15].

The other dissimilarities are due to the deterministic discrete
event simulation in ns-2. ns-2 TCP traces are more smooth
than WiFu TCP traces due to the exactness of a simulator
and the variability when processing packets via the kernel.

Option Default Modified
congestion control cubic reno
timestamps 1 1
window scaling 1 0
sack 1 0
fack 1 0
ecn 2 0
dsack 1 0
frto 2 0

TABLE I
MODIFIED LINUX KERNEL SETTINGS

Furthermore, the ns-2 TCP traces run for a fixed time period
(approximately six seconds) while WiFu TCP sends a fixed
amount of data (200K) as fast as it can.

Fall and Floyd [23] did further research examining scenarios
of two, three, and four specific dropped packets. We have
replicated these experiments WiFu, and WiFu TCP is nearly
identical to ns-2 in each case. The only differences are those
explained above.

V. PERFORMANCE EVALUATION

To evaluate the performance of WiFu, we conduct exper-
iments using both wireless and wired networks. Though our
own research focus is on wireless networks, our experiments
with a wired network provide an interesting test of WiFu’s
capabilities and indicate that WiFu will continue to be useful
as wireless speeds increase.

We use the mesh testbed at BYU. These machines have an
Intel Pentium 4 2.4 or 3.2 Ghz CPU with 767 or 1024 MB
of RAM, and they run Ubuntu 10.04 with the 2.6.32 Linux
kernel. Each machine has an IEEE 802.11a/b/g wireless card
installed, plus an Ethernet card that is configurable to 10, 100,
or 1000 Mbps. When we run wireless experiments, the radios
in the other mesh nodes are turned off.

A. WiFu Transport

To assess WiFu Transport’s performance, we compare our
implementation of TCP Tahoe in WiFu with the Linux kernel
implementation of TCP Reno. We are unable to compare
directly with Tahoe in Linux because recent kernels no longer
contain an implementation of TCP Tahoe. To make as accurate
a comparison as possible, we adjust kernel settings to convert
the default choice of Cubic into TCP Reno instead, which
provides a close match to Tahoe functionality. Table I shows
the settings we changed to switch to Reno.

Our first experiment compares the goodput of the WiFu
Transport Tahoe implementation with the kernel’s Reno imple-
mentation on a one-hop to three-hop path through our wireless
mesh testbed. This experiment uses IEEE 802.11a, with a
maximum transmission power of 17 dBm and a fixed rate
of 24 Mbps. We transfer a 1 MB file, with 50 repetitions,
alternating between WiFu and the kernel.

Table II shows that the performance of WiFu is comparable
the Linux kernel, with a very small (3%) difference over paths
with two or three hops. This difference is likely attributable to



Hops WiFu TCP Kernel TCP Ratio
1 12.143 12.113 1.002
2 5.732 5.929 0.967
3 4.020 4.138 0.971

TABLE II
WIRELESS MEDIAN GOODPUTS, MBPS

Rate WiFu TCP Kernel TCP Ratio
100 KB

10 9.555 9.564 0.999
100 93.880 95.654 0.981

1 MB
10 9.429 9.429 1.000

100 94.184 94.298 0.999
10 MB

10 9.416 9.416 1.000
100 94.139 94.160 1.000

TABLE III
WIRED MEDIAN GOODPUTS, MBPS

the differences between Tahoe and Reno; Reno is a little more
aggressive when only a single packet is lost at a time. We will
be implementing Reno in WiFu to verify this conclusion.

Our second experiment compares the goodput of WiFu
Transport with the Linux kernel on a one-hop wired con-
nection at several different Ethernet speeds. Our motivation
for this experiment is to investigate how fast WiFu can go,
without the limiting speeds of a wireless network. For this and
following wired experiments we use newer machines with an
Intel Core 2 Duo 3.16 Ghz processor and 4 GB of RAM. We
transfer files of various sizes, alternating between WiFu and
the kernel, and repeat each transfer 50 times.

Table III shows that WiFu is able to achieve a median
goodput that is equal to the kernel for both a 10 Mbps link
and a 100 Mbps link, for large files. WiFu is 2% slower than
the kernel for a small file on a 100 Mbps link. Currently, the
maximum speed we have recorded for WiFu on a Gbps link
is 412 Mbps. Clearly, there is a performance hit for running
a user-space transport protocol and socket interface for high
speed links. We are continuing to optimize our implementation
to push the limits of a user-space implementation.

Our third experiment compares the performance of WiFu
Transport and the kernel when each has multiple TCP flows.
We vary the number of simultaneous connections from 2 to
10, and show representative results for the case where there
are 10 competing flows. Each flow sends 1 MB of data
over a 100 Mbps Ethernet link; we use a wired link here
to avoid the confounding unfairness that can happen due to
the 802.11 MAC. We stagger the start time of each thread by
approximately 10 milliseconds.

Figure 5 shows that WiFu handles multiple competing flows
nearly identically to the kernel. This further validates that our
WiFu TCP implementation is correct. In these graphs, the
goodput of each TCP flow is smoothed over time, using a
window of 50 milliseconds that slides every two milliseconds.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

20

40

60

80

100

Sm
oo

th
ed

 G
oo

dp
ut

 (M
bp

s)

(a) WiFu TCP

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

0

20

40

60

80

100

Sm
oo

th
ed

 G
oo

dp
ut

 (M
bp

s)

(b) Kernel TCP

Fig. 5. Instantaneous Goodput with 10 Flows

Flows WiFu TCP Kernel TCP
2 0.999977 0.999972
5 0.999972 0.999901
10 0.999971 0.999882

TABLE IV
WIRED MULTIPLE FLOWS MEDIAN JAIN’S FAIRNESS INDEX

Note that the kernel shows more variance between the 0.35
and 0.55 second time periods than WiFu TCP, but this is a
minor difference.

We also measure the fairness of WiFu for multiple flows
that start at the same time. Table IV shows the median of
Jain’s fairness index for each set of experiments. This shows
that WiFu TCP is as fair as the kernel.

B. WiFu Core

To examine the performance of WiFu Core, we configure
a basic handler that simply tells the kernel to accept every
packet; this tests the overhead of the basic architecture without
any additional packet handling.

We examine the performance of WiFu Core over the same
point-to-point connection used in the second experiment of
WiFu Transport, except we use the default kernel settings
rather than modifying them to be more like TCP Reno. To
show the high performance of WiFu Core, we configure the
Ethernet card to 1000 Mbps with an MTU of 1500 bytes.
Furthermore, we intercept all packets in the input and output
hooks on both the sender and the receiver. This means that data
packets and acknowledgements are brought into user space



twice: once when it is sent and once when it is received. We
use iperf version 2.0.4 with default settings, which sends data
over a TCP connection as fast as it can for 10 seconds. We
run 50 iterations with WiFu Core turned on and 50 iterations
with WiFu Core turned off.

Our results show that with WiFu Core enabled, the median
data transfer speed is 933 Mbps and the maximum is 935
Mbps. With WiFu Core turned off, the median and maximum
data transfer speed is 941 Mbps. This means that the overhead
of WiFu Core on a gigabit connection is less than one percent.
Due to limited buffer space in the kernel, ENOBUFS errors
may occur with netfilter. The sender experienced an
average of 59.34 ENOBUFS errors per data transfer over
the 50 iterations, while the receiver had 0.16. As computer
speeds continue to increase, we expect this number to drop.
Overall, our results show that WiFu Core can intercept packets
and bring them into user space extremely fast. For wireless
networks, where bandwidth is generally more constrained,
WiFu Core’s overhead is insignificant.

VI. WIRELESS TRANSPORT

To demonstrate the utility of WiFu, we have implemented
and tested several transport protocols. Our goal is to determine
how rate control can provide better fairness and performance
for transport connections in wireless mesh networks. We begin
by exploring two TCP extensions, called Adaptive Pacing [8]
and Delayed ACKs [9]. We then consider a hybrid transport
protocol we call TP-α, which removes TCP’s congestion
control algorithm and replaces it with a rate-based controller.

Our experience with each of these protocols demonstrates
how simple it is to use WiFu for experimental research. A
single developer was able to write the code for the two TCP
extensions in only a few weeks because of the extensive code
reuse available with a decomposed TCP. It was likewise very
easy to retain TCP’s connection management and reliable
transfer components, and combine them with an entirely new
congestion controller. This is important because numerous
approaches have been proposed to significantly improve TCP
performance in a mesh network based on promising simulation
results, but relatively few have been implemented and tested
experimentally. It is well-known that simulators use many
simplifications to model radio propagation, such as a flat, level
world and perfectly circular transmission areas. [24], [25],
[26]. Thus, it is important to validate simulation results using
experiments on testbeds.

Though we have done extensive testing on numerous topolo-
gies, we present here only selected results to illustrate the work
we have been able to do with WiFu. In particular, we show
results of testing the TCP extensions on a 9-hop wireless path
in our mesh testbed. All radios are using IEEE 802.11a with
MAC-layer retries set to zero, RTS/CTS turned off, and static
routing. The transmission power for the network adapter is set
to 6 dBm and the transmission rate is 24 Mbps. Note that the
lower power enables us to construct a longer chain, similar to
those used in the original simulations, while still maintaining
near zero loss on each link when used in isolation. In each

experiment we transfer a 1 MB file along each connection,
experiments for different protocols are interleaved, and each
protocol is run 10 times.

A. Adaptive Pacing

Adaptive Pacing is based on the observation that window-
based congestion control leads to burstiness, which causes
increased contention and loss in wireless networks. Because
TCP reduces its rate in response to loss events, this leads to
performance degradation. With Adaptive Pacing, a TCP sender
uses RTT measurements to estimate the 4-hop propagation
delay, and then derives a sending rate based on this delay.
A rate limiter restricts TCP to pacing out packets at this
rate. The idea is to transmit a new packet after the previous
one has travelled four hops, in order to minimize contention.
Simulations using ns-2 [22] show that Adaptive Pacing results
in up to an 84% increase in goodput over TCP NewReno for
a single flow.

Goodput and fairness results for Adaptive Pacing on the
long wireless path are shown in Figure 6. We vary the pacing
metric from 1 to 5 hops, so that we can explore the effective-
ness of pacing in general, rather than limiting our experiments
to just the proposed 4-hop delay metric. Figure 6(a) shows
that when a single flow is active on the path, Adaptive Pacing
provides little gain in goodput. In fact, goodput is generally
much lower than an unmodified TCP Tahoe, and pacing only
helps when using a 1-hop delay. The picture changes when
five flows are active on the path, as shown in Figure 6(b). In
this case, pacing does improve goodput as compared to Tahoe.
More importantly, pacing significantly improves Jain’s fairness
index [27] among the competing flows, increasing it from
0.87 to 0.97 and higher. Thus our implementation experience
indicates that the benefits of Adaptive Pacing are only apparent
when multiple flows are active.

B. Delayed ACKs

TCP with Delayed ACKs is based on the observation that
acknowledgements contribute to a high amount of transmission
overhead in wireless networks, particularly as the bit rate of the
network increases. TCP already combines up to two ACKs in
certain circumstances, and the Delayed ACKs work proposes
combining up to four ACKs [9]. The number of ACKs to
combine at any time varies dynamically, beginning with no
combination early in a connection and then building up to
increasing amounts of aggregation as the connection continues.
The idea is to prevent TCP from getting stuck with too few
ACKs when the congestion window is small and combining
more ACKs when the window is large enough. Simulations
using ns-2 show that Delayed ACKs improves TCP goodput
by 20% to 40%.

Goodput and results for Delayed ACKs on the long wireless
path are shown in Figure 7. With Delayed ACKs, several
thresholds are used to determine when to start combining
ACKs, based on how many bytes have been transferred so
far. We use thresholds of 1 KB, 10 KB, and 100 KB to switch
to combining 2, 3, and 4 ACKs, respectively. TCP will wait



1 2 3 4 5 TCP Tahoe
Pacing # Hops

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

   
 G

oo
dp

ut
 (M

bp
s)

(a) Goodput for 1 flow

1 2 3 4 5 TCP Tahoe
Pacing # Hops

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

   
 G

oo
dp

ut
 (M

bp
s)

(b) Goodput for 5 flows

Fig. 6. Goodput for TCP with Adaptive Pacing on a 9 hop wireless path

at most 0.1 seconds when combining ACKs. Since we use a 1
MB file transfer for our experiments, this means that 90% of
each transfer is performed combining the maximum number
of ACKs. When a single flow is active on the path, Delayed
ACKs achieves nearly 20% higher goodput as compared to our
Tahoe implementation. With five active flows, the aggregate
goodput of the flows is 75% higher with Delayed ACKs. There
is no substantive change in fairness in this case, with Delayed
ACKs scoring 0.93 on Jain’s fairness index, and Tahoe score
0.938. The gains for multiple flows sharing a path are much
higher than previously reported, as prior work focused on a
single flow.

C. TP-α

Our development of TP-α is inspired by ATP, a transport
protocol designed to overcome the shortcomings of TCP
in a mobile ad hoc network [28]. ATP uses a rate-based
congestion control algorithm, where the rate is based on driver
measurements of the average transmission and queueing delay
along the path. We have previously implemented and tested
ATP, showing how it needs several modifications to meet its
performance goals [29].

We want to test the feasibility of delay-driven, rate-based
congestion control for wireless networks, separately from the
other modifications ATP makes to the connection management
and reliability portions of TCP. To create TP-α, we used
a combination of WiFu Core to provide cross-layer delay
measurements and WiFu Transport to provide a mix of TCP
and ATP functionality. First, we modified the ath5k driver
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Fig. 7. Goodput comparison of TCP and Delayed ACKS on a 9 hop wireless
path

to measure delay for each packet it forwards, then we wrote
a handler in WiFu Core to read this delay from the /proc
file system and store it in a shim header as each packet
is forwarded. Next, we modified the TCP Tahoe reliability
component in WiFu Transport to report this delay back to
the sender in each ACK. Finally, we wrote a new congestion
control component in WiFu Transport to use this reported
delay to calculate the transmission rate of the flow and to
pace out packets at this rate.

TP-α is still undergoing significant development. In prelim-
inary experiments we have used a fixed rate for TP-α, after
careful testing to determine a rate that minimizes the delay
reported by the modified ath5k driver. In some cases, we
are able to obtain as much as a 50% goodput gain. This is
encouraging, as it indicates that WiFu can be used to develop
experimental transport protocols, and that there is room to
improve significantly on the performance of TCP.

VII. RELATED WORK

A number of projects implement a network stack in user
space, making it easier to experiment with modifications to
TCP – among them Alpine [4], Daytona [5], and Minet [6]. All
of these projects use the Packet Capture library [30] to capture
and inject packets directly from and to network interfaces,
along with iptables or similar software to prevent the kernel
from handling packets intended for user-space processing.
While these projects all build TCP implementations at the user
level, our goals differ significantly. We are building a more



general framework for transport protocols that supports both
TCP and non-TCP variants. This desire for greater flexibility
significantly impacts how WiFu is built. At the same time, we
want to provide good performance. Alpine, for example, has a
one millisecond sleep timer while polling for packets, so with
a 1500 byte MTU it can support a maximum rate of only 12
Mbps. Finally, most of this source code is no longer available.

More recent related work includes the FINS framework [31]
and CTP [7]. FINS moves the entire network stack into user
space to facilitate experimental research. This is complemen-
tary to our work, which is not a direct port and supports greater
flexibility in transport protocol design. FINS is also relatively
new and does not yet have published results. CTP composes
transport protocols out of fine-grained microprotocols, with a
focus on grid computing. CTP was optimized to provide per-
formance up to 900 Mbps by minimizing copies and providing
more efficient event handling [12]. However, these speeds are
for a minimal configuration, not a full version of TCP, and CTP
does not provide for cross-layer interactions at intermediate
nodes. The UDT/CCC library provides a convenient event-
driven and object-oriented framework for congestion control
algorithm design [32], but is more limited in scope than WiFu,
which allows experimentation with all aspects of transport
protocol design. Finally, the Click project [11] is similar in
spirit to WiFu, but focuses on designing a software router,
rather than a framework for transport protocols.

VIII. CONCLUSION

WiFu provides a flexible environment for user-space devel-
opment of experimental transport protocols, with an emphasis
on protocol decomposition. The performance of WiFu is close
to that of the kernel for wireless networks and for Ethernet
links up to 100 Mbps. We have used WiFu to develop a new
implementation of TCP Tahoe that is divided into components,
as well as extensions to TCP and a new transport protocol
that uses cross-layer measurements to control the transmission
rate. Our experiences demonstrate that WiFu has largely met
its design goals of flexibility, code reuse, performance and
scalability.

We are releasing WiFu as an open source project and will
continue to make improvements. One area we will focus on is
improving the overall goodput that WiFu Transport is able to
achieve, past the 412 Mbps mark. Reducing the number of data
copies and the number of events throughout the architecture
may increase performance. In addition to performance, we
are investigating pluggable protocols, where a new transport
protocol could be dynamically loaded in, rather than compiled
into the framework. Finally, we are actively using WiFu to
develop new transport protocols based on optimal rate control.
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