
MULTICAST ROUTING SUPPORT FOR REAL-TIME APPLICATIONS

by

Daniel Mark Alexander Zappala

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Ful�llment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(Computer Science)

December 1997

Copyright 1997 Daniel Mark Alexander Zappala

Dedication

For Tracy, my eternal companion.

ii

Acknowledgements

I am deeply grateful for Deborah Estrin, Scott Shenker, and Bob Braden, all three of

whom have been partners in this e�ort. Deborah has provided consistent direction and

guidance throughout my time at USC and has been willing to provide all the resources I

could need to be successful. Scott has given me invaluable encouragement and feedback,

inspiring clarity of both thought and prose. Bob led my e�orts as part of the RSVP design

team and helped me to become involved in the IETF. He has always been willing to discuss

protocol design principles and details.

I am thankful for Peter Danzig, Rafael Saavedra and John Silvester for providing

feedback on this work and for serving as members of my Qualifying Exam and Dissertation

Committees. Many people have helped me to develop the ideas presented herein, including

my fellow students and researchers at USC and ISI { Lee Breslau, Kannan Varadhan, Shai

Herzog, Katia Obraczka, Sugih Jamin, John Heidemann, Ramesh Govindan and others {

and my colleagues in the IETF working groups. I am also thankful for those who helped me

during my internship at Xerox PARC, including Lixia Zhang, Scott Shenker, Steve Deering

and Ron Frederick. I am particularly indebted to the late Kim Korner for developing my

enthusiasm in operating systems as a new student at USC and for introducing me to

Deborah and her network lab.

I greatly appreciate the �nancial support of the Air Force O�ce of Scienti�c Research

under Award No. DAAH04-94-G-0378.

I am especially thankful for the love and support of my parents and for my son Dominic,

who brings me joy every time I look at him. Most of all I am thankful for my wife Tracy

for giving me her unquali�ed devotion and daily sustenance and for accepting my annual

status report of \just one more year."

iii

Contents

Dedication ii

Acknowledgements iii

List Of Tables vi

List Of Figures vii

Abstract viii

1 Introduction 1

2 Related Work 7

2.1 Multicast Routing : 7
2.2 Reservation Setup Protocols : 9
2.3 Alternate Path Routing : 12
2.4 Non-Opportunistic Routing : 14
2.5 Route Construction : 15

3 Proposed Multicast Routing and Reservation Architecture 17

3.1 Multicast Route Setup Protocol : 18
3.2 Local Route Construction Agent : 18
3.3 Application Interface : 19

4 Designing a Loop-Free Multicast Route Setup Protocol 21

4.1 The MORF Multicast Route Setup Protocol : : : : : : : : : : : : : : : : : : 21
4.1.1 Preventing Loops : 24
4.1.2 Comparison of Setup Mechanisms : : : : : : : : : : : : : : : : : : : 26

4.2 Recovering From Failures : 27
4.3 Pinning Routes on Multi-Access Subnets : 29
4.4 Bundling : 31
4.5 Unicast Route Setup : 32
4.6 Pitfalls of Pinning Using Hop-by-Hop Routing : : : : : : : : : : : : : : : : : 33

4.6.1 Preventing Loops : 33
4.6.2 Comparison to Explicit Routing : 34

iv

5 Interdomain Route Construction Heuristics 36

5.1 Approach : 36
5.2 Simulation Model : 39

5.2.1 Topology : 39
5.2.2 Workload : 39

5.3 Simulation Results : 40
5.3.1 Success Rate : 40
5.3.2 Path Length : 45

6 Routing Support for RSVP 48

6.1 RSVP Overview : 49
6.2 Smooth Switching : 50
6.3 Advance Advertising : 56
6.4 Sender Deactivation : 59
6.5 Route Change Noti�cation : 62
6.6 Evaluation : 63

7 Contributions and Future Work 66

v

List Of Tables

4.1 Comparison of Setup Mechanisms : 26

5.1 Overhead Bounds for Route Construction Heuristics : : : : : : : : : : : : : 38
5.2 Success Rate of Heuristics on 100-node Flat Random Network : : : : : : : : 41
5.3 Success Rate of Heuristics on 100-node Transit-Stub Network : : : : : : : : 43
5.4 Generation Parameters For Transit-Stub Networks : : : : : : : : : : : : : : 44
5.5 Success Rate of Heuristics on 1000-node Transit-Stub Networks : : : : : : : 45
5.6 Path Length of Alternate Paths : 46

6.1 Mechanism Costs : 64

vi

List Of Figures

3.1 Multicast Routing and Reservation Architecture : : : : : : : : : : : : : : : 17
3.2 Application Interface to Architecture : 19

4.1 Using a Setup Message to Install a Route : : : : : : : : : : : : : : : : : : : 22
4.2 MORF Route Setup Messages : 23
4.3 Matching Setup Messages : 24
4.4 Loops Formed by Naive Setup Messages : 25
4.5 Merging Setup Messages Instead of Matching : : : : : : : : : : : : : : : : : 25
4.6 Using a Teardown to Remove a Failed Route : : : : : : : : : : : : : : : : : 28
4.7 Fast Teardown Mechanism : 30
4.8 Notify Mechanism : 31
4.9 Pin Message Loop : 33
4.10 Connecting a Pinned Branch : 34
4.11 Separate Refresh Message : 35

5.1 Route Construction Agents Serve Local Receivers : : : : : : : : : : : : : : : 37
5.2 Flat Random and Transit-Stub Networks : : : : : : : : : : : : : : : : : : : 39
5.3 Histogram of Success Rate on 100-Node Flat Random Network : : : : : : : 41
5.4 DDF of Success Rate on 100-Node Flat Random Network : : : : : : : : : : 42
5.5 DDF of Success Rate on 100-Node Transit-Stub Network : : : : : : : : : : 43
5.6 Histogram of Extra Hops per Alternate Path on 100-Node Flat Network : : 46

6.1 RSVP Path and Resv Messages : 49
6.2 Smooth Switching Service : 51
6.3 Smooth Switching Requires Merge Message : : : : : : : : : : : : : : : : : : 51
6.4 Standby Message Processing for Smooth Switching Mechanism : : : : : : : 53
6.5 Switch Message Processing for Smooth Switching Mechanism : : : : : : : : 55
6.6 Advance Advertising Service : 58
6.7 Advance Advertising Mechanism : 58
6.8 Sender Deactivation Service : 60
6.9 Sender Deactivation Mechanism : 61
6.10 Route Change Noti�cation Service : 62

vii

Abstract

One approach to improving the performance of real-time applications over the Internet

is to design new adaptive techniques, similar to the use of TCP for elastic applications.

These techniques include adapting a receiver's audio playback point and varying a re-

ceiver's subscription to levels of hierarchically encoded video. Another approach is to

upgrade the best-e�ort service model of the Internet to include enhanced levels of service

characterized by reduced delay or increased bandwidth. Researchers in this area have pro-

posed an integrated services architecture that uses a combination of scheduling algorithms,

admission control, and a reservation protocol to control access to these service levels.

While both of these approaches are promising, neither can be completely successful

without a corresponding upgrade of the routing infrastructure. Real-time applications,

whether they use adaptive techniques or integrated services, are currently limited to using

shortest path, opportunistic routes. If an application is unable to obtain its desired service

on the shortest path, routing does not supply it with an alternative route. Likewise, if

an application is able to obtain its desired service on the current route, routing may

opportunistically change to a new, shorter route, possibly resulting in a service disruption.

This dissertation explores several interdomain multicast routing enhancements that

can improve the performance of real-time applications. We propose extending multicast

routing protocols to include alternate routes and pinned (non-opportunistic) routes. Rout-

ing may use these extensions on-demand in support of receivers that need them. We have

designed a simple, scalable route setup protocol that re-con�gures multicast trees using

an explicit route. We describe how this protocol prevents loops and compare it to several

other alternatives.

The utility of the route setup protocol depends in large part upon the ability of routers

to construct alternate routes for multicast group members. It is particularly important

that routers �nd routes using only partial knowledge of the network topology due to the

size of the Internet. In addition, we distribute alternate path construction to leaf routers,

to avoid the overhead of centrally computing routes. We have developed a set of heuristics

viii

for constructing alternate paths in this context. We describe the results of a simulation

study that evaluates these heuristics and demonstrates the validity of our approach.

Given the ability to compute and install alternate, pinned routes, the network can bet-

ter support real-time applications, both those using adaptive techniques and those using

integrated services. Beyond these fundamental extensions, we explore a broad set of addi-

tional services that routing protocols may use speci�cally to support RSVP, a reservation

protocol that is part of the integrated services architecture. We present designs of these

additional services and qualitatively analyze their mechanistic complexity. Our goal is to

help determine whether these features are feasible, as part of the ongoing investigation

into the applicability of the integrated services architecture.

ix

Chapter 1

Introduction

The Internet has proven to be highly successful in supporting elastic applications, which

adapt to varying delays and packet loss. Much of this success arises from the Internet's

use of the datagram as a building block, over which other services including end-to-end

reliability are built [Cla88]. At the heart of the Internet are routers that implement

best-e�ort service; routers do not guarantee delivery or performance. Routers simply

service packets in �rst-come �rst-served order and packets are dropped from the tail of the

router's queue as it overows. To obtain end-to-end reliability out of these components,

applications use TCP [Pos81b, Jac88] to adjust their sending rate and retransmit lost

packets.

Recently, the Internet has begun using multicast delivery to support group communica-

tion [CD92, Eri94]. Multicast delivers packets from a sender to a group of receivers over a

multicast tree. The primary advantage that multicast has over traditional unicast delivery

is that the sender transmits a single packet to reach all of the group members, rather than

sending a separate copy to each receiver. Replication of each packet is handled by the

network and is done only when necessary, i.e. at the branching points in the multicast

tree. Furthermore, the group model used by the Internet is receiver-oriented; receivers

may join a group independently (i.e. senders do not control membership), and senders do

not need to know the identities of group members. By avoiding the potential bottleneck

at the sender, dynamic multicast applications may grow to encompass very large groups

of receivers [Dee88b, MS94].

Another recent development has been the increasing use of real-time applications in the

Internet. Real-time applications impose stringent delay and throughput constraints on the

network, as compared with traditional elastic applications. When real-time applications

communicate across a network, data must traverse the network in time for the application

to use it. Likewise, a real-time application often needs a certain amount of throughput,

1

below which it does not receive adequate service. Because of these characteristics, real-

time applications require new mechanisms, beyond TCP and best-e�ort service, to cope

with delay and loss.

One approach to improving the performance of real-time applications is to design new

adaptive techniques. For example, receivers of an audio or video signal can adapt the

point at which the signal is played back [BCS94] and can re-construct the timing of the

signal produced by the sender [SCFJ96]. In addition, senders can use hierarchical encoding

techniques to split a video signal into several composable layers, which receivers then use

to reconstruct the signal. By varying the layers to which they subscribe, receivers can

control their �delity in response to congestion [MJV96].

Another approach is to upgrade the best-e�ort service provided by the network to ac-

commodate real-time applications. The proposed integrated services architecture [BCS94]

introduces preferential Qualities of Service (QoS) using a combination of scheduling al-

gorithms, admission control, and a reservation protocol. Applications use the reservation

protocol to request resources from routers and are either accepted or rejected by admission

control at each router. The Internet community is in the processes of standardizing one

such reservation protocol, RSVP [ZDE+93, BZB+97], which is designed for both unicast

and receiver-oriented multicast sessions.

While both of these approaches are promising, neither can be completely successful

unless the routing infrastructure is also upgraded. The current routing infrastructure of

the Internet [Hed88, Mil84, Hed89, IDR93, RL94, Moy94b], designed to support best-

e�ort service, has two primary characteristics, both of which pose problems for the two

previously-cited approaches:

Shortest Path Current routing protocols use a single cost metric (i.e. hop-count)

and then choose the least-cost path (i.e. the shortest path). An

application has no alternative route to try if it does not receive

acceptable service along this path. An adaptive real-time applica-

tion, for example, can adjust its behavior while using the shortest

path, but still may not be able to achieve acceptable delay on this

path. Similarly, a real-time application using an integrated ser-

vices network may have its resource reservation denied by some

routers along the shortest path. Thus, many ows may be denied

service even though other paths could accommodate their service

requirements.

2

Opportunistic Current routing protocols always utilize the current shortest path,

even if the previous shortest path is still functioning. This behav-

ior is opportunistic in the sense that the routing protocol makes

the switch assuming that the shorter path is always better. How-

ever, this behavior may cause a real-time application to expe-

rience a service disruption. For example, an adaptive real-time

application may have adjusted its behavior to suit the current

route and reached equilibrium; when the route changes, it must

adapt to the new route and may not necessarily re-establish the

same service level. Likewise, a reservation-based application may

have reserved the current route, but may be denied making an

equivalent reservation on the new route. In both cases, the dura-

tion of the service disruption may be inde�nite.

This dissertation investigates solutions to these two problems, which are applicable

to all real-time applications, and also examines other forms of routing support designed

speci�cally for RSVP. We concentrate on interdomain multicast routing.

Many in the research community have investigated solutions to these two problems

within the context of QoS routing. A typical QoS routing scheme globally distributes

topology, link resource availability, group membership, and (in some cases) per-ow re-

source usage. A source's �rst-hop router then uses this information to compute a mul-

ticast tree that is known a priori to have available resources. Finally, this same router

uses a source-initiated setup protocol to install the multicast tree in the network. The

bulk of this work attempts to minimize tree cost, primarily for static multicast groups

[BKJ83, Wax88, Cho91, KPP92]. The Internet and ATM communities have begun apply-

ing these results to link-state multicast routing protocols [RGW97, ZSSC96, PNN96].

Because these QoS routing approaches require global distribution and synchronization

of such rapidly varying quantities, we do not believe they are applicable to interdomain

routing, where issues of scale are paramount.1 A global database of topology alone scales

linearly with the size of the network; neither group membership nor the number of ows

is limited by the size of the network. Additionally, the overhead required to maintain a

consistent view of this data depends on application behavior, such as group membership

1QoS routing may still be used within a domain.

3

changes and resource usage. We believe this combination of storage and processing over-

head rules out the use of centralized computation and installation of routes, as well as

global optimization of these routes.

One alternative to QoS routing that does scale adequately for interdomain routing is

to compute multiple paths for each destination based on relatively static routing metrics.

In this approach, called QoR routing, the metrics reect the \Quality of Route" using

static service characteristics such as maximal bandwidth or minimal latency to indicate

link capabilities.2 The routing protocol maintains a separate routing table for each metric,

and applications indicate the their desired QoR when sending data. This is similar to the

congestion-sensitive type-of-service routing described in [MS95], but routes adapt only to

topology changes, not resource usage. QoR routing could provide signi�cant bene�ts for

best-e�ort service by allowing, for instance, interactive applications to avoid routes involv-

ing satellite links, while enabling applications involving asynchronous bulk data transfers

to seek out maximal bandwidth paths. For similar reasons, QoR routing could bene�t

real-time and other inelastic applications.

Because QoR routing metrics are static, this approach has none of the scaling problems

of the more dynamic QoS routing proposals. However, the essence of the failed primary

route problem remains; an application could only avail itself of one minimal-latency route,

and one maximal-bandwidth route, etc. If a service requirement was denied along one of

these pre-computed routes, there would be no way of utilizing available bandwidth along

other routes with similar properties. Thus, while QoR routing can increase the chance that

an application will be satis�ed with the primary route, receivers need routing to install

alternate paths into a multicast tree on demand. Likewise, QoR routing does not solve the

opportunistic routing problem, since QoR routes adapt as the metrics change. Therefore,

receivers need routing to also install pinned routes { routes that will not adapt unless they

fail { into a multicast tree on demand.

The contributions of this dissertation are threefold. First, we propose a routing ar-

chitecture in which alternate paths and pinned routes are installed by a multicast route

setup mechanism. Existing route setup mechanisms use sender-oriented route setup or re-

quire routers to know the identities of downstream group members [DB95, FBZ94, UNI96],

which renders them unusable for interdomain routing. We have designed a simple, scalable

route setup mechanism named MORF and show that it prevents loops while establishing

and re-routing a multicast tree.

2Scott Shenker coined this term and distinguished it from QoS routing.

4

The key to the viability of this architecture is whether routers (or route servers) can

�nd adequate alternate paths. To scale to the interdomain level, we propose to use route

construction that is both decentralized and query-driven. Routers with local receivers �nd

alternate paths for their receivers on-demand. Moreover, these routers do not use global

distribution of topology to �nd routes. Rather, they �nd routes using a partial map of the

network, which they build using heuristics to query the routing tables of other nodes.

The second contribution of this dissertation is a simulation study demonstrating the

viability of using localized route construction to �nd alternate paths around bottlenecks.

Our intent in presenting these results is to demonstrate the utility of several low-cost,

route construction heuristics, thus validating our architecture. As others �nd better route

construction heuristics, routers may incrementally deploy the improvements.

In our approach to route construction, we are designing for the case when congestion is

not widespread, and thus do not attempt to �nd paths where resource availability is known

a priori. We view this as the most feasible approach for interdomain routing for several

reasons. During times of high load when congestion is common, using alternate paths

can degrade network utilization [KZ89, Aki84]. Moreover, it is impracticable to design a

scalable route computation method for �nding the proverbial needle in a haystack | the

one route that has available resources among a very large number of routes that do not.

Finally, this dissertation explores a broad set of additional routing services that may

be used to support RSVP within the integrated services architecture. Since there is no

widespread agreement on the set of services that should be available to hosts, or even if the

integrated services architecture itself should be adopted, we view our work as exploratory:

we discuss the set of services routing might o�er to support RSVP. We are not proposing

that these services be adopted at this time; rather we are trying to understand what is

needed mechanistically to provide these services. The design and analysis we perform can

help to determine whether a particular feature is feasible from an architectural standpoint.

For those features we deem feasible, the ultimate decision on adding it to future versions

of RSVP and routing protocols depends on further evaluation of their utility.

The rest of this dissertation is outlined as follows. Chapter 2 discusses work related to

this dissertation. In Chapter 3 we describe our proposed multicast routing and reservation

architecture, giving the context in which a route setup protocol operates. Chapter 4 details

our design of MORF, a multicast route setup protocol and analyzes its loop-freedom.

Chapter 5 describes the interdomain route construction heuristics we have developed and

presents simulations showing their e�ectiveness in �nding alternate paths. Chapter 6

5

explores routing support of RSVP. Finally, Chapter 7 presents our contributions and areas

for future work.

6

Chapter 2

Related Work

This dissertation is related to the work of many researchers. First we look at the devel-

opment of multicast routing and reservation protocols. We then describe the history of

alternate path and non-opportunistic routing, motivating our need to extend this work

to receiver-oriented multicast. Finally, we look at route construction, including QoR and

QoS routing, as well as other e�orts to compute paths when the entire network topology

is not known.

2.1 Multicast Routing

Multicast routing protocols form a multicast forwarding tree to deliver data to each mem-

ber of a group, reducing forwarding overhead compared to using unicast routing to reach

each group member. The multicast group model also provides a convenient method of

logically naming an anonymous group of receivers. We are most interested in multicast

routing because most of the interesting real-time routing problems become more compli-

cated with the interaction of many receivers. In addition, the receiver-oriented model used

by IP multicast is a scalable way of providing routing services on a per-receiver basis.

The IP multicast routing model, introduced by Deering [Dee88a], de�nes a multicast

group as a collection of receivers. Each receiver independently joins the multicast group

by advertising its membership to its local router. A host that wishes to send data to the

multicast group does not need to be a member of the group, nor does it need to know

the identity of each member. The sender simply addresses packets to the group using

the multicast group address, and the network delivers the packets to each member. The

network uses a multicast routing protocol to determine how routers forward packets toward

receivers along the multicast delivery tree associated with the group address.

7

Deering developed multicast routing methods for both distance-vector and link-state

protocols [Dee91]. Subsequently, Deering created DVMRP [Dee88b, WPD88] based on his

distance-vector method; it is widely used in the MBone (the Internet multicast backbone)

today [CD92]. DVMRP routers exchange routing metrics for each subnet in a network

using a distance-vector protocol based on RIP [Hed88]. When a source begins transmitting

data, the routers use the distance vector to compute on-demand a reverse shortest path

multicast tree that spans the entire network. The routers then prune the tree to remove

any branches that do not lead to any members. Periodically, routers graft pruned branches

back onto the tree in order to capture membership and topology changes. These routing

actions, termed ood and prune, occur only for groups whose senders are transmitting

data. However, because ood and prune is expensive, DVMRP is best-suited for small

networks and groups with dense membership throughout the network.

Based on Deering's link-state model [Dee91], Moy modi�ed OSPF [Moy94b], a link-

state unicast routing protocol, to perform multicast routing. Termed MOSPF [Moy94a,

Moy94c], this protocol globally distributes membership status as part of its link-state ad-

vertisements. Routers calculate sender-based, shortest-path multicast trees on-demand

and, due to their global membership knowledge, can avoid the periodic ooding and prun-

ing of DVMRP. The multicast trees created by MOSPF are based on the shortest path

from each source to each receiver, rather than on the shortest path from each receiver to

the source. MOSPF aggregates routing information into areas in order to scale to large

networks, at the expense of non-optimal routing between areas.

Both DVMRP and MOSPF create sender-based trees. When multiple senders are

involved in group communication, routing must keep state for each source-group pair. To

counteract this state requirement, Ballardie et al. developed a multicast routing protocol,

CBT [BFC93, Bal97, BJR97], that uses a single, shared tree for all sources that send

to a multicast group. Routers with local receivers explicitly join the multicast tree by

contacting one of a set of core routers. Formation of the shared tree is based on unicast

routing, making CBT independent of the underlying unicast routing. Shared trees incur

greater delay than shortest-path sender-based trees. The delay incurred by a shared tree

depends on the placement of cores throughout the network; while optimal placement of

cores is NP-complete, heuristics can be used to reduce tree cost [TR96, Shu94]. A shared

tree may also su�er from tra�c concentration when many sources are active. Wei and

Estrin [WE94] give an in-depth analysis of the tradeo�s of sender-based and shared trees.

Billhartz et al. have also compared PIM and CBT [BCFG+97]. The shared trees used by

8

CBT are most useful for applications that have low bandwidth requirements, can tolerate

larger delays, or require low cost.

Deering et al. subsequently developed a multicast routing protocol, PIM [DEF+94,

EFH+97, DEF+97], to take advantage of the bene�ts of both sender-based and shared

trees. PIM supports two complementary routing modes, sparse mode and dense mode, de-

signed to adapt to di�erent multicast group and wide-area network characteristics. Dense

mode multicasting is similar to DVMRP; routers build on-demand multicast trees that

use a broadcast-and-prune approach suitable to networks with dense membership repre-

sentation. Routers performing sparse mode multicasting �rst create shared trees similar

to CBT, using a rendezvous point toward which members join. Once the data rate for an

active source is large enough, receivers may individually join a shortest path tree for the

source. Sparse mode trees are created through explicit joining; both routing modes use

unicast routing to construct multicast trees.

Recently, due to the growing use of multicast routing, several groups of researchers have

begun designing a hierarchical multicast routing architecture. One of these e�orts [DT95]

describes hierarchical use of DVMRP, by de�ning regions similar to domains and specifying

interactions between intra-region and inter-region border routers. Routing within a region

is based on an encapsulation scheme using region identi�ers in order to improve scaling.

Similarly, a preliminary design describes the hierarchical use of PIM [DFE+95]. More

recently, Thaler et al. are designing an interdomain multicast routing protocol that builds

bidirectional, shared trees to connect multicast domains and reduce routing state [TEM97].

2.2 Reservation Setup Protocols

Reservation setup protocols reserve resources along a route by contacting admission control

at each switch. For multicast applications, the reservation protocol establishes a reserva-

tion over a multicast tree. Some setup protocols use a hard-state approach, in which the

network is responsible for reliably maintaining the reservation state. Others use soft state

that times out after a period and must be refreshed by an endpoint. In this disserta-

tion, the reservation protocol requests routing services on behalf of the application. We

are particularly interested in receiver-oriented reservation protocols, in which the receiver

initiates the reservation, because this matches the scalability of multicast routing.

In the telecommunications industry, Plain Old Telephone Service (POTS) involves in-

channel setup of a point-to-point call. To provide end-to-end digital communications,

the industry introduced the Narrowband Integrated Services Digital Network (N-ISDN)

9

speci�cation. N-ISDN uses out-of-band signalling to merge voice and data communications

on a single circuit-switched network. More recently, the telecommunications industry has

positioned Broadband ISDN (B-ISDN) as the network of the future. Vendors are designing

B-ISDN to provide a range of multimedia services using a �xed-size, fast packet (cell)

switching technique known as ATM.

ATM signalling protocols unify routing and reservation setup into a single mechanism

for connection establishment. Because ATM switches perform forwarding based on con-

nection identi�ers, the signalling protocol must create forwarding state for each new con-

nection. Simultaneously, the signalling protocol reserves su�cient resources at each switch

to carry the call. Typically signalling is divided into user-network (UNI) signalling and

network-network (NNI) signalling, due to a strong distinction between endpoints (usually

devices) and the network. Most ATM signalling protocols specify user-network behavior;

the network signalling required to support the speci�ed mechanisms is not fully developed.

Finally, ATM signalling protocols usually run over a reliable layer and establish hard state.

A number of standards bodies, vendors and universities have explored parallel e�orts

to provide multicast and QOS services in B-ISDN. The International Telecommunica-

tions Union (ITU) published recommendation Q.2931 for unicast B-ISDN calls, then up-

graded this speci�cation for multicast [IT94d] and QOS negotiation [IT94a, IT94b, IT94c].

The ATM Forum produced UNI speci�cation 3.1 [UNI94] based on these protocols. The

SPANS UNI and NNI [FS94b, FS94a] specify multicast channels by allowing a source

to add multiple destinations to a call. GSP [MT92b, MT92a] and EXPANSE [Min91]

both provide general signalling models for multiple-connection multimedia calling. Most

signi�cantly, CMAP [BDG91] de�nes a multicast reservation establishment protocol with

receiver-initiated joining. The group initiator may specify one of three methods of control-

ling how members may join the group: at the invitation of the group initiator, via member

request to the initiator, or via uncontrolled member joining. The cost of allowing this level

of control is that each router must know how each multicast group is controlled. Most

recently, the ATM Forum has approved UNI 4.0 [UNI96] to provide receiver-initiated joins,

QOS negotiation and multiple connections per call, somewhat similar to CMAP. None of

these protocols allow sharing of reservations among the senders to a multicast group and

thus may have excessive overhead for some applications [MS94].

In the Internet community, Forgie developed ST [For79] for unicast reservations. Dele-

grossi and Berger later extended this in ST-II [DB95] to provide multicast resource reser-

vations. The ST-II protocol, designed as a separate real-time network suite, creates its

own source-based multicast trees based on unicast routing. A source initiates reservations

10

over the tree on behalf of each receiver as the receiver joins the multicast group. The

capacity of the resource reservation is established by the source and may be relaxed by

individual receivers. Multiple senders transmitting data to the same group of receivers

must make independent reservations.

Ferrari et al., in their work on the Tenet architecture [FBZ94], are primarily concerned

with establishing real-time channels that provide a priori network guarantees. The Tenet

reservation scheme uses two passes to dedicate resources for a unicast channel. The �rst

pass, in the forward direction, makes a conservative reservation and the second pass, in the

reverse direction, relaxes the reservation to �t the end-to-end parameters of the channel.

The Tenet group is currently extending the scheme to provide multicast channels.

Cidon et al. have designed a fast reservation mechanism [CGS93] used in the plaNET

architecture, which provides numerous types of routing, including source routing, label-

swapping, and ATM routing. Their setup mechanism takes advantage of a selective copy

mechanism, whereby the connection establishment packet is forwarded immediately via

hardware to each router and copied into the processing subsystem. Each router performs

connection establishment in parallel, and a subsequent signal commits the reserved re-

sources to the channel. This scheme is also currently limited to unicast applications.

Zhang et al. developed RSVP [ZDE+93, BZB+97] as a receiver-oriented reservation

protocol designed to match Deering's burgeoning receiver-oriented multicast model. Be-

cause it is receiver-oriented, RSVP can scale to large numbers of receivers by not requiring

source interaction with each receiver. Routers forward reservation requests up a multicast

tree toward the source, merging requests of various receivers at the branching points of

the tree. RSVP also de�nes several reservation styles that indicate how reservations for

di�erent senders may interact, allowing receivers to more exibly match their reservation

requests to the style of a particular application [MS94]. RSVP does not have its own

multicast routing protocol, but uses whichever routing protocol has de�ned the multicast

tree. As such, RSVP works with both shared and sender-based multicast trees. RSVP

also allows transparent operation through routers that do not support the protocol.

Recently, the developers of both the Tenet architecture and the ST-II protocol have ex-

tended their setup mechanism to include receiver-initiated reservation requests [BFG+95,

DHHS93]. The Tenet setup protocol is also being extended to include multicast channels,

and both are implementing channel grouping mechanisms similar to RSVP's once-unique

reservation styles. Once these enhancements are more fully developed, the primary di�er-

ence between them and RSVP will be their hard-state nature. Using hard-state provides

stable routing to real-time applications while making failure recovery mechanisms more

11

di�cult to implement. RSVP uses a soft-state mechanism that provides simple and robust

failure recovery, but makes stable routing a more di�cult service to implement. RSVP

owes its soft-state design primarily to the Internet design philosophy discussed by Clark

[Cla88]. Because the RSVP design follows the modular split between reservations and rout-

ing, it is more applicable to the routing work of this dissertation than the Tenet reservation

protocol, for example.

2.3 Alternate Path Routing

Typically, networks use a preferred or default route for most tra�c. Some networks have

used alternate paths, in addition to the default route, to improve performance. In this

dissertation, we integrate alternate path routing into adaptive multicast routing to provide

reservable routes for multicast real-time applications. We are thus interested in observing

how other researchers have used alternate paths in support of unicast routing and extending

these results to multicast routing.

In order to provide paths sensitive to network conditions, the ARPANET routing

algorithms used load based routing to construct lowest-delay paths [MRR95]. However,

these algorithms were shown to lead to oscillations [KZ89]. When a link became congested,

routes using the link adapted to a di�erent path. This caused a new link to become

congested while the original link became uncongested, leading to a new set of route changes.

These results initiated a trend toward less load-sensitive routing.

Current routing protocols, such as OSPF [Moy94b], RIP [Hed88], IDRP [IDR93], and

BGP [RL94], are based on topology and compute shortest-paths that adapt only to topol-

ogy changes. IDPR [ES91] used source routes to enhance shortest-path routing with

policy-based routing. Typically, policy routing is used to determine which entities may

send data through a region of the network. However, this functionality is similar to that

of real-time applications requiring a path that has adequate resources available.

The routing algorithms developed for virtual circuit routing, deployed primarily by the

telecommunications industry, have used alternate path routing during congestion. Gen-

erally the primary route consists of a one-hop path and the alternate routes have two

hops. Routing uses the primary path if it is available; otherwise, it chooses an alternate

path. Algorithms such as DNHR [AKK81], DAR [GKK88], and FAR [MS91] select from

a set of pre-computed alternate paths and di�er only in their manner of path selection.

DNHR computes alternate paths based on estimates of long-term tra�c patterns. DAR

randomly computes a set of alternate paths, while FAR computes alternate paths based

12

on load balancing and maximization of pro�t. Other algorithms, such as DCR [HSS91],

ALBA [MG90, MGH91] and RTNR [AH93] control routing based on real-time measures of

network load. DCR uses a central processor to collect load measurements every 10 seconds

and adjust switch routing tables based on these measures. Both ALBA and RTNR use

decentralized algorithms to measure link utilization and classify each link according to a

set of discrete levels. The goal of both of these algorithms is to perform load balancing for

the network.

A common problem with alternate path routing is that it can decrease throughput

at very high load [Aki84]. This decrease in throughput results when calls routed along

alternate, two-hop paths block calls from being routed along a direct path. Virtual circuit

routing algorithms solve this problem by reserving a portion of each link for calls routed

directly on the link. This method, known as trunk reservation, limits the amount of

alternate paths that routing may use during high load.

Similarly, several researchers from the Internet community have used adaptive routing

to avoid congestion and improve throughput. Attar [Att81] developed a link-state routing

algorithm that ranks paths according to preference. Nelson et al. [NSC90] used alternate

paths that were triggered by a single router detecting congestion. Wang and Crowcroft

[WC90] used a similar method to provide shortest path routing with \emergency exits."

Each of these algorithms separate route computation from route selection based on load

measures.

Breslau [Bre95] developed a comprehensive alternate routing architecture based on

source routing for alternate paths. In his model, sources select alternate routes based on

load information that the network distributes in a limited fashion. His results indicate

that this architecture can improve throughput, setup delay and route quality. Breslau

also extended the bene�ts of trunk reservation in circuit-switched networks to the use of

alternate paths in data networks.

Breslau's work veri�es the premise of the uni�ed routing model [ERH92], which uses

both hop-by-hop routing and source routing. Generic hop-by-hop routes are used for most

tra�c, while source routes are used for more specialized tra�c requirements. The open

issues with the uni�ed architecture are route construction and the integration of a source

routing protocol with common hop-by-hop routing protocols such as BGP and IDRP.

13

2.4 Non-Opportunistic Routing

The virtual circuit routing algorithms employed by the telecommunications industry do

not adapt opportunistically to topology changes. For example, non-opportunistic routes

work well in the telephone network because of its relatively simple service model and stable

usage patterns. In addition, because a typical phone call lasts on the order of minutes,

the overhead for setting up a virtual circuit is tolerable.

Through the use of source routes, the Internet also supports non-opportunistic routing

[Pos81a]. Breslau's work on alternate path routing [Bre95], cited earlier, shows how the

network can use source routing to improve throughput.

ST-II [DB95] speci�es a way to pin the route of a unicast or multicast ow by following

hop-by-hop the routes installed by the routing protocol. A source initiates a stream by

identifying an initial set of receivers. The control protocol carries a joint reservation and

routing setup message along the shortest path routes from the sender to these receivers. At

each hop, the control protocol creates non-opportunistic routing state for the stream. The

source may use a similar mechanism to add new receivers to the stream during the call.

Receivers may also request that they be added to the stream by contacting a router on the

tree. The branch is not established by the receiver however; the router that is already on

the tree is responsible for extending the tree to the new receiver. Because ST-II does not

have a mechanism for grafting receivers into the tree using source routes, it is restricted to

achieving reservations over a small set of routes, without any recourse to alternate paths.

The method that ST-II uses to pin a route is somewhat similar to the method this

dissertation evaluates in Chapter 4, albeit for a source-based model rather than a receiver-

based model. ST-II identi�es several failure scenarios that may lead to looping during

installation of a route. Because routing setup is restricted to the forward direction from the

tree to the receivers, however, ST-II's looping situations are simpler to detect and prevent.

This simplicity comes with the signi�cant cost of requiring routers on the multicast tree

to know of all downstream receivers that they add to the tree.

Recently, Guerin et al. have proposed a similar method for pinning unicast routes

that is integrated into RSVP [GKH97]. However, while ST-II removes a pinned route if

looping occurs during setup of the route, the Guerin proposal tries to adjust by temporarily

unpinning the route. This proposal has not yet been extended to multicast routing, and

the group is now looking at source routing alternatives [GKR97b, GKR97a].

The Tenet architecture [FBZ94], similar to ST-II, uses only non-opportunistic routes

to support real-time connections and establishes a connection using joint routing and

14

reservation setup. Unlike ST-II, however, the routes are pre-computed at the edge of

the network. This results in more expensive route computation, with the bene�t of the

opportunity to use alternate paths. The Tenet architecture does not specify how routes

are precomputed however, nor how the network ensures tree integrity when receivers join

the tree via alternate paths.

Both ST-II and Tenet use a conservative, hybrid network architecture. Real-time ap-

plications use non-opportunistic routing as their basic network service. Data applications

use separate network protocols. There are several important rami�cations that result

from using this type of network architecture. Using non-opportunistic paths requires a

\customized" route for each connection, based on the application's service requirements.

By forcing all real-time applications to use this type of routing, the architecture loses

the scaling bene�t of allowing adaptive real-time applications to use hop-by-hop routing.

In addition, strictly separating real-time and non-real time connections hinders multicast

communication among heterogeneous groups of receivers.

2.5 Route Construction

One method for overcoming the limitation of using only a single shortest path is to com-

pute multiple such paths distinguished by their Quality of Route (QoR). As a means for

providing a variety of paths to meet application requirements, QoR routing is not a novel

idea. Several routing protocols such as OSPF [Moy94b] allow the creation of multiple

routing table entries per destination, and a Type of Service �eld in IP packets has been

designed to index those tables [Alm92]. Recent work by Matta and Shankar [MS95] indi-

cates that such an approach can improve overall end-to-end delays in the network. While

their approach uses metrics based on measured delay and utilization, the formulations of

their metrics result in relatively static measures that thus do not exhibit the oscillation

seen in the ARPANET [KZ89].

Most of the research community has instead concentrated on using Quality of Service

(QoS) routing to solve this same problem for small networks. The goal of QoS routing

is to compute paths that are known to have available resources. This foundation of this

work is the development of heuristics for minimizing the network cost of a multicast tree,

which is an NP-complete problem. Kumar and Ja�e [BKJ83] show that heuristics based

on shortest paths have comparable average performance to heuristics based on minimal

spanning trees. Waxman [Wax88] extends the basic multicast routing problem to include

a bandwidth constraint and dynamic joining and leaving by group members. Kompella

15

et al. [KPP92] propose a heuristic for multicast trees with a delay constraint. Salama

et al. do a comprehensive evaluation of both unconstrained and constrained algorithms,

all for static multicast trees (i.e. the group members are all known in advance). The

Internet and ATM communities have begun applying these results to link-state multicast

routing protocols [RGW97, ZSSC96, PNN96]. For all of this work, network topology and

link characteristics are known globally and the root of the multicast tree runs the routing

algorithm.

In contrast, this dissertation explores several route construction heuristics for large-

scale networks that do not require global distribution of topology. We are primarily con-

cerned with techniques that can be implemented using today's routing infrastructure.

Alaettinoglu has explored hierarchical extensions to routing that enable large-scale policy

and ToS routing [Ala94]. This work includes route construction heuristics based on query-

ing di�erent levels in the hierarchy to obtain detailed information and compute policy-

sensitive routes. Hotz has studied route construction heuristics based on route fragments,

which are precomputed partial source routes, and triangulation of graph position [Hot94].

16

Chapter 3

Proposed Multicast Routing and Reservation Architecture

The proposed integrated services Internet includes a multicast routing and reservation

architecture designed to allow RSVP to interoperate with current routing protocols (Fig-

ure 3.1). The key aspect of this architecture is the split between routing and reservation

protocol functions. The distinction between these two systems was de�ned in the original

RSVP publication [ZDE+93] and has since been re�ned within the community. The general

rule of this division of labor is that routing decides whether to forward packets, whereas

RSVP inuences how they are forwarded. Thus, unicast and multicast routing protocols

install the routes that data traverses, and RSVP associates a Quality of Service with the

data as an alternative to the default best-e�ort service. This architecture allows RSVP to

operate over any routing protocol and also allows RSVP and routing enhancements to be

developed independently.

To this architecture, we add a multicast route setup protocol for installing alternate

and pinned routes. To �nd alternate paths, routers at the endpoints of the network (i.e.

near hosts) may also incorporate a local route construction agent. This chapter discusses

each of these two additions.

Router

Multicast
Routing

Unicast
Routing

Local Route
Construction

Route Setup
ProtocolReservation

Protocol

Current Routing Extensions

Other Routers

Figure 3.1: Multicast Routing and Reservation Architecture

17

3.1 Multicast Route Setup Protocol

The function of the multicast route setup protocol is to install alternate and pinned routes

on behalf of receivers, overriding the opportunistic routes used by a multicast tree. Any

route it installs is pinned so that it remains in place until it fails, at which time the

multicast tree migrates back to an opportunistic route.

In keeping with the split between routing and reservation protocols, we separate route

setup from reservation setup. Our primary reason for this is that applications not us-

ing reservations may want to utilize route setup. For example, use of video- and voice-

conferencing over the multicast backbone is widespread today [CD92], but each receiver

is limited to using the shortest path. When congestion occurs on this path, a receiver

may want to use route setup to install an alternate path, yet still use best-e�ort service

over that path if it yields adequate performance. In this context, applications could use

a reservation protocol as yet another, separate enhancement of this service model. This

requires that we not embed route setup in the reservation protocol itself, but rather incor-

porate it into the basic routing infrastructure. In addition, because both RSVP and the

routing services described herein are still under development, it is particularly important

that they be developed in a modular manner.

3.2 Local Route Construction Agent

One of the key challenges of this multicast routing architecture is to develop a route

construction protocol that may be applied to the interdomain scale. We distribute route

computation to routers located near receivers and do not attempt to �nd routes based on

link resource availability. Instead, routers �rst use the shortest path and then, as needed,

�nd alternate paths that avoid any bottlenecks. This design follows the uni�ed routing

model [ERH92], in which commonly-used routes are pre-computed and routes used less

frequently are computed on-demand.

Using localized route construction reduces the problem of constructing multicast routes

to that of constructing unicast routes. Each route construction agent only needs to �nd a

route between a local receiver and the sender, rather than having to take into account the

entire multicast tree. This approach scales well to large multicast groups and allows agents

to use existing unicast routing protocols as the basis for a route construction algorithm.

In addition, using localized route construction has several other advantages. First,

because a route construction agent does not need to coordinate its routing decisions with

18

Router

Multicast
Routing

Unicast
Routing

Local Route
Construction

Route Setup
Protocol

Routing

Reservation
Protocol

Host
Reservation

Protocol
Application
QoS Mgr

Other Routers

Figure 3.2: Application Interface to Architecture

other agents, it can utilize information that is not captured by the routing protocol's static

metrics. This information can include the status of local reservation requests or resource

availability information that is only known locally. In addition, route construction agents

do not need to globally agree on a metric or algorithm. This allows diversity in the

evolution of route construction techniques.

One consequence of using localized route construction is that routers may choose con-

icting routes. Because any node in a multicast tree must have a single parent, routes using

conicting parents must be resolved. In the multicast routing architecture, the route setup

protocol resolves such conicts as it installs each route. Section 4 discusses this procedure

in more detail.

3.3 Application Interface

Figure 3.2 shows how applications and the reservation protocol interact with our additions

to the architecture. Applications access route setup and reservation setup through two

separate interfaces, in contrast to many QoS routing proposals[FBZ94, DB95, Sti95] that

use a single interface. Note that there is no application interface to the local route con-

struction agent; the application's �rst-hop router contacts the agent when it needs a route.

By not allowing the application to determine the routes being used, we prevent a mali-

cious, malfunctioning, or misguided user from providing its own route and undermining

the integrity or e�ciency of a given tree.1

1We are indebted to our colleagues Steve Deering and Van Jacobson for emphasizing that end systems
should not control routing.

19

In the most simplistic model of how this architecture would be used, applications

would interface directly with routing and the reservation protocol, respectively. For the

new services we propose, for example, they would ask routing for an alternate path or

pinned route. In fact, given the complexity of the service options available, we assume that

many operating systems will o�er some form of support for managing quality of services.

Such a QoS manager could act as an agent on behalf of an application, managing the

reservation establishment and the routing services procurement process. This abstraction

would allow applications to operate in terms of the service being presented to the user.

If the service is unacceptable, a user (or a monitoring program) could indicate this to

the QoS manager, which could ask for an alternate route or choose some other action.

Unacceptable service could be indicated by a user's unhappiness with packet delays or an

admission control failure along the shortest path. Likewise, acceptable service could be

indicated by low packet loss or a successful reservation. In this case, the QoS manager

may want to minimize the chance of disruption and ask routing to pin the current route.

The QoS management function could reside either in the application itself, or in a

separate library, or in some other form of operating system support. All of these possi-

bilities �t within our proposed architecture; we are de�ning the services available to an

end-host, not the organization of software on an end-host. We are also not designing the

QoS manager itself. We note that there are many possible actions the QoS manager may

take upon after a reservation failure or success. After a reservation failure, a router may

choose to downgrade its reservation level, downgrade its application type (i.e. switch from

voice to text), or leave a multicast group for a higher level of video signal encoding. The

reverse actions apply equally for a reservation success. Determining which of these actions

the QoS manager chooses in each situation is beyond the scope of this dissertation.

20

Chapter 4

Designing a Loop-Free Multicast Route Setup Protocol

Within the architecture described in Chapter 3, the multicast route setup protocol installs

pinned routes and alternate routes. Installation of a route may be initiated by any router

on behalf of its local receivers, and computation of the route is not necessarily coordinated

with any other routers. Thus, when installing a route, the primary tasks of the route

setup protocol are to arbitrate among conicting route setup requests and to maintain a

loop-free multicast tree. For this chapter we assume that all requests carry equal weight,

so the setup protocol resolves conicts in �rst-come, �rst-served order. Chapter 6 discuss

the complications that arise when some requests outweigh others.

In this chapter, we explore various distributed, receiver-oriented designs for a loop-free

multicast route setup protocol. For the purposes of this discussion, we use the term leaf

router to mean a router acting on behalf of local receivers. Routers, not hosts, are the

entities that setup routes. Furthermore, for each of the designs we describe, the messages of

the protocol operate on a multicast tree. This tree may be for a single sender [DEF+94], or

multiple senders may rendezvous via a core [DEF+94, BFC93]. In either case, the protocol

is the same; in the following discussion we refer to root of a tree for generality.

We begin by describing the MORF route setup protocol and compare it to several sim-

ilar protocols. We then discuss extensions for bundling, recovering from failures, pinning

routes on multi-access subnets, and doing unicast route setup. Finally, we discuss the

pitfalls of relying on hop-by-hop routing decisions when performing route pinning.

4.1 The MORF Multicast Route Setup Protocol

MORF is a general route setup protocol that can install both alternate and pinned routes.

A leaf router using MORF encodes the route it wants to use as a strict explicit route, which

21

a) Setup builds Setup Tree, prunes
multicast tree

b) re-configured Setup tree and
multicast tree

Prune

Setup

multicast tree
Setup Tree

Figure 4.1: Using a Setup Message to Install a Route

lists all the routers to be traversed.1 MORF then installs this route and re-con�gures the

multicast tree as needed.

The installation of routes is the same for both alternate paths and pinned routes.

As it is installed, an alternate path needs to be pinned as well, or else routing would

immediately adapt back to the shortest path. Thus, we can view the route pinning and

alternate path services as nearly equivalent; the only di�erence is in the way the route is

obtained. For route pinning, a leaf router probes the network for the current route (i.e.

with the traceroute utility or by querying its routing database). For alternate path routing,

a leaf router may contact a route server to compute a suitable alternate path.

Once a router obtains an explicit route that it wishes to install, it generates a Setup

message containing the route. MORF forwards the Setupmessage along the route, creating

a Setup Tree that it maintains separately from the shortest-path tree built by the multicast

routing protocol.2 Where the Setup Tree conicts with the shortest-path tree, MORF

overrides the shortest-path tree, and the multicast routing protocol prunes the conicting

branches (Figure 4.1a). MORF also adjusts forwarding table entries so that the resulting

multicast tree reects the path installed by MORF (Figure 4.1b).

This �rst example is a simpli�ed case when a Setup does not conict with the rest

of the Setup Tree. However, the setup protocol must also resolve Setup messages from

di�erent leaves that use conicting routes, because leaf routers may use independent route

construction agents. MORF resolves conicts by choosing the �rst route that is installed

1We could use the term source route, but the route lists hops from the receiver to sender and is installed
by a router near the receiver.

2To reduce the amount of state kept by routers, the multicast routing protocol could just ag incoming
and outgoing interfaces that are pinned. Here we use separate multicast trees to simplify the description
of the protocol.

22

Procedure Setup(child; root; group; route)
begin

if (9timerSetup)
if (routeSetup 6= upstream(route))

send Failure(child; root; group; route; routeSetup; \merge failure")
else

childSetup childSetup + child

endif

return

endif

create timerSetup

childSetup childSetup + child

parentSetup nexthop(route)
routeSetup upstream(route)
if (: end(route))

send Setup(parentSetup; root; group; route)
endif

return

end

Procedure Failure(parent; root; group; routetried; routetree; reason)
begin

if (6 9timerSetup)
return

endif

foreach(c 2 childSetup)
send Failure(c; root; group; routeSetup; routetree; reason)

endfor

delete timerSetup

end

Figure 4.2: MORF Route Setup Messages

for any given branch of the tree. Where subsequent routes meet this branch, they must

conform to the route used from that point upward toward the source. If the setup protocol

does not follow this restriction, then a number of looping scenarios may arise; Section 4.1.1

discusses these cases and the manner in which they are prevented.

Figure 4.2 shows the details of the MORF mechanism. Each router on the Setup Tree

keeps state consisting of:

routeSetup cache of upstream route,

parentSetup parent of Setup Tree, and

childSetup children of Setup Tree.

23

a) Setup does not match, triggers
Failure

b) Setup matches

Setup(<1,2,3,4,5,6,S>)

S

1

32

5 4

6

<4,5,6,S> multicast tree
Setup Tree

Setup(<1,2,3,4,6,S>)

Failure(<1,2,3,4,6,S>,<4,5,6,S>)

S

1

32

5 4

6

<4,5,6,S>

Figure 4.3: Matching Setup Messages

Note that separate state is kept for each multicast tree, but we omit the root and group

in this notation for readability.

When a Setup message adds a node to the Setup Tree, it caches the route it will use

to travel from that node upward toward the root. If a subsequent Setup message arrives

at that node, it compares the remaining route it must travel to the route cached locally.

If the routes match, the node merges the Setup message. If the routes do not match, the

node stops processing the Setup and sends a Failure message downstream (Figure 4.3a).

The Failure message contains the route used by the failed Setup and the route used by the

tree from the rejecting node upward. A router receiving a Failure message merges the two

routes it contains to construct a new route that will match the tree, then sends a second

Setup with this route (Figure 4.3b).

It is from this mechanism {Match or Fail { that MORF derives its name. By using this

restriction, MORF may increase the setup latency, but it prevents any loops from forming

while the tree is constructed. The remainder of this section discusses potential looping

scenarios and analyzes the tradeo�s of MORF versus other solutions for preventing loops.

4.1.1 Preventing Loops

When Setup messages are not restricted to matching the rest of the Setup Tree, a number

of possible looping scenarios arise. Figure 4.4a shows two Setups, each using an explicit

route. Based on their order of arrival, as shown, if the Setups merge they form a loop.

This loop can be prevented if nodes 1 and 3 compare the routes and detect the loop will

form. However, when three joins are involved, as in Figure 4.4b, a single node cannot

prevent the loop from forming without having more information available.

24

b) Loop formed by three Setupsa) Loop formed by two Setups

5

2

31

S

4 6

Setup #1 <4,1,2,S>
reaches 1 first
Setup #2 <5,2,3,S.>
reaches 2 first
Setup #3 <6,3,1,S>
reaches 3 first

Sender:
Loop:

S
1-2-3-15

2

31

S

4 6

Setup #1 <4,1,2,3,S>
reaches 1 first
Setup #2 <6,3,1,S>
reaches 3 first

Sender:
Loop:

S
1-2-3-1

Figure 4.4: Loops Formed by Naive Setup Messages

a) Setup triggers Merge sent upstream b) Setup triggers Merge sent downstream

multicast tree
Setup Tree

Setup(<1,2,3,4,6,S>)

Merge(<4,5,6,S>)

S

1

32

5 4

6

Setup(<1,2,3,4,6,S>)

Merge(<1,2,3,4>)

1

2

S

3

5 4

6

Figure 4.5: Merging Setup Messages Instead of Matching

To prevent loops, a node can use one of two strategies:

1. Before adding a parent, the node checks all its descendants to be sure the parent is

not already a descendant.

2. Before adding a child, the node checks all its ancestors to be sure the new child is

not already an ancestor.

We discuss each of these in turn.

Due to the dynamic nature of multicast trees, a node may not know all of its ancestors

or descendants. While a node knows the route embedded in the Setup message it has sent

upstream, that message may have merged with another Setup carrying a di�erent route.

Likewise, other Setups may have merged downstream, adding new descendants.

One approach to keep nodes updated concerning upstream and downstream merges is

to distribute information after each merge. Following solution (1) above, each Setup that

merges can send a Merge message upstream containing the portion of the route it has

travelled (Figure 4.5a). Every node can then know all its descendants and thereby detect

25

Table 4.1: Comparison of Setup Mechanisms

Mechanism Message Storage Setup Loop
Name Overhead Overhead Latency Handling

MORF O(1) O(a) 1 or 3 trips Prevent
Merge Down O(1) O(a) 1 trip Detect/Break
Merge Up O(d) O(d) 1 trip Detect/Break

any loops. Alternatively, in keeping with solution (2) above, each Setup that merges can

send a Merge message downstream containing the upstream portion of the route it merged

with (Figure 4.5b). This allows every node to detect loops by knowing all its ancestors.

We denote these two mechanisms as Merge Up and Merge Down, respectively. In both of

these approaches, information distributed by the Merge messages may be stale, so loops

such as that shown in Figure 4.4 may still form temporarily before being broken.

As opposed to these solutions, which in some cases will only detect loops after they

have been formed, the strategy we use in MORF prevents any loops from forming. By

requiring each Setup to match the upstream route already in place on the tree, MORF

in e�ect enforces solution (2) by requiring that each node know its ancestors before it is

added to the tree. Once a node is added to the multicast tree, its ancestors do not change.

The cost of this strategy is that each Setup may take an extra round-trip between itself

and the rest of the tree.

4.1.2 Comparison of Setup Mechanisms

Table 4.1 compares MORF to the Merge Down and Merge Up mechanisms, when building

a single multicast tree, assuming there is no packet loss and that one receiver joins the

tree at a time. The columns listing message and storage overhead consider the behavior

of each mechanism at a single node. Overhead in these cases is expressed in terms of a,

the number of ancestors of a node, or d, the number of descendants of a node. The setup

latency column lists time in terms of the number of trips taken between a leaf router and

the multicast tree.

Clearly the Merge Up mechanism does not scale well because each node must store each

descendent as well as send one message upstream for each descendant. The advantages of

using a receiver-oriented mechanism are lost with Merge Up; a sender-oriented mechanism

has the same message overhead, but only the sender must store the descendants.

26

The MORF and Merge Down mechanisms have a similar overhead in this situation.

The MORF mechanism may have a longer setup latency, but in return has the distinct

advantage that it may prevent rather than just detect loops, as discussed above.

When we relax the assumption that one receiver joins the tree at a time, thus allowing

multiple simultaneous Setups, the other tradeo�s of these two mechanisms become more

apparent. In this situation, MORF must take into account conicting Setups. We assume

that it will use a binary exponential backo� to prevent thrashing. If we also assume a

message transmission takes a uniform time t when sent over any link, then the dynamic

setup latency for MORF is:

LatencyMORF = 3Lt(c+ 1) +
cX

i=1

b � 2i�1;

where L is the average length of the branch from a leaf router to the rest of the tree, b is

the backo� constant, and c is the number of conicts the Setup encounters.

When considering these dynamic conditions, each node using the Merge Down mecha-

nism may potentially send O(a) messages downstream, since each ancestor may send the

node one Merge message. In addition, the setup latency for Merge Down must take into

account the time required to break loops. The worst case time to break a loop of m nodes

is (m� 1)t, so the setup latency can be given by:

LatencyMergeDown = 2Lt+
lX

i=1

(mi � 1)t;

where l is the number of loops encountered and mi is the number of nodes in loop i.

As can be seen from this analysis, the Merge Down mechanism requires a robust

protocol design to ensure that loops are quickly detected and broken. The more merges

that occur simultaneously, the longer it will take for the mechanism to distribute the

information needed to break the loops. The Merge Down mechanism will also have to

detect when a Merge message is lost, as that event can cause a loop to persist. In contrast,

MORF uses a simpler protocol to prevent loops and uses more complexity only at the

edges of the network.

4.2 Recovering From Failures

A route setup protocol should be resistant to failures, which can be a router crashing,

a process on the router crashing, or any other event that causes the router to lose state

associated with the route setup protocol. A common approach to handling lost state is for

27

a) Teardowns remove Setup Tree branches
after failure, Join re-builds multicast tree

b) re-configured Setup Tree and
multicast tree

Teardown
Teardown

Join

multicast tree
Setup Tree

Figure 4.6: Using a Teardown to Remove a Failed Route

each node to periodically send a copy or a refresh of the previous message sent upstream to

rebuild any lost state. This approach { often called soft state { greatly simpli�es a protocol

because it does not need to distinguish between sending a new message or sending a copy.

A hard state protocol, on the other hand, uses separate messages to establish and then

maintain protocol state.

RSVP is often cited as an example of the soft state approach. With RSVP, a refreshed

reservation can be sent upstream to re-establish a lost reservation or to adapt to a route

change. If it were to use a hard state approach, RSVP would need to use additional

mechanism to discover when state is missing and then use some recovery mechanism to

re-establish the reservation or else remove the reservation altogether.

A route setup protocol does not make opportunistic routing changes, but it can use

refresh messages to rebuild lost state if the router with the failure is still operational. The

same techniques that MORF uses to prevent loops when initially installing an alternate

or pinned route apply equally to refreshes of a Setup message.

However, MORF still needs a mechanism to detect and recover from failures when the

failed router is no longer operational. MORF may rely on a unicast routing protocol to

exchange query messages with its neighbors to determine whether they are alive, or it

may use its own similar mechanism. Once a failure is detected, MORF sends a Teardown

message both upstream and downstream of the failure to remove failed branches from the

Setup Tree (Figure 4.6a). At each hop, MORF noti�es the multicast routing protocol of

the branches it is removing. The multicast routing protocol re-builds the multicast tree

to reect its metric, often the shortest path to the root (Figure 4.6b).

There will be some delay between the time a pinned router fails and the time down-

stream nodes receive a Teardown to remove the pinned branch. During this delay, other

28

Setup messages could merge with the orphaned routers downstream of the failure. The

newly-established branch will not actually be connected to the rest of the multicast tree

and will be removed as soon as the upstream failure is detected.

The MORF protocol prevents any loops from forming in this situation. However, it can

use a fast teardown mechanism to both reduce the chance of orphan merging occurring

after a failure and to quickly clean up after orphan merging does occur. Because this

mechanism is not needed to prevent loops, it is an optimization.

For the fast teardown mechanism, when a router sends a Teardown downstream it

expects that it will be acknowledged with a TearAck by all of its pinned children. Until

the router receives all of the TearAcks, it re-sends the Teardown to its non-responding

children at a relatively frequent rate. The router also sets a limit on the maximum time it

will wait for its children to respond, and assumes they have failed if that limit is reached.

This process of collecting acknowledgements repeats itself, hop-by-hop, down the orphaned

subtree until all of the branches are removed. Figure 4.7 details the processing for this

mechanism. Note that a more basic mechanism can be derived by removing the lines that

reference sending a TearAck or maintaining a timer.

4.3 Pinning Routes on Multi-Access Subnets

MORF needs extra mechanism to prevent duplicates when pinning a route on a multi-

access local-area subnet (or LAN), such as an Ethernet. If one router is pinning the

multicast tree so that it forwards packets onto the LAN, then the other routers must not

forward packets onto the LAN. When a router enters a state where it explicitly does not

forward packets onto a LAN, it is doing route excluding, the opposite of route pinning.

The problem of ensuring that only a single router forwards packets onto a LAN is also

addressed by the PIM design [EFH+97] and has a similar solution for route pinning.

Figure 4.8 details the mechanism routers use to determine when they should do route

excluding. All routers on a LAN must share state about which of them (if any) is doing

route pinning. Whenever a router pins a route on a LAN, it periodically sends a Notify

message on the LAN indicating the tree it is pinning for. Routers receiving a Notify begin

route excluding and set a timer for the excluding state to expire. This timer is reset every

time another Notify is received.

Due to errors or lost state, several routers on a LAN may both decide to do route

pinning for the same tree at the same time. To resolve such conicts, a router that receives

a Notify when it is pinning for the same tree compares its own IP address to that of the

29

Procedure Teardown(node; root; group; routerfailed)
begin

send TearAck(node; root; group)
if (6 9timerSetup)

return

endif

if (node 2 childSetup)
childSetup childSetup � node

if (childSetup = ;)
send Teardown(parentSetup; root; group; routerfailed)
delete timerSetup

endif

endif

if (node = parentSetup)
foreach(c 2 childSetup)

send Teardown(c; root; group; routerfailed)
endfor

nSetup 1
timerSetup timer

while(childSetup 6= ;)
wait for event
if (receiveTearAck(c,root,group))

childSetup childSetup � c

endif

if (timerSetup expires)
if (nSetup � maxtries)

childSetup ;
else

foreach(c 2 childSetup)
send Teardown(c; root; group; routerfailed)

endfor

nSetup nSetup + 1
timerSetup timer

endif

endif

endwhile

delete timerSetup

endif

end

Figure 4.7: Fast Teardown Mechanism

30

Procedure Notify(peer; root; group)
begin

if (6 9timerSetup)
create timerSetup

excludingSetup 1
timerSetup timer

return

endif

if (excludingSetup = 1)
excludingSetup 1
timerSetup timer

return

endif

if (myIPaddress > peer)
send Teardown(parentSetup; root; group;myIPaddress)
delete parentSetup

delete childSetup

delete routeSetup

excludingSetup 1
timerSetup timer

else

send Notify(peer; root; group)
endif

end

Figure 4.8: Notify Mechanism

sender of the message. If its address is larger, then it relinquishes its pinning. Otherwise,

it sends another Notify message to force the other router to relinquish its state and begin

excluding.

4.4 Bundling

Some applications may divide a stream of data into components and send each component

to a di�erent multicast group. For example, a video application may hierarchically encode

the video stream [Sha92] and send each encoding level to a separate group. Recent work

in this area has demonstrated that receivers may adapt to congestion in the network by

subscribing to di�erent encoding groups and varying the quality of the signal they receive

[MJV96].

Current multicast routing protocols would route these multicast groups independently

and, depending on the protocol, there is a chance that the trees would take di�erent paths.

31

In the typical case, this may not be a problem and may actually provide the bene�t of

load-sharing. However, if each encoding level is marked with a di�erent priority, then a

receiver may prefer that lower priority packets are dropped when congestion occurs. If the

encoding levels take di�erent paths, higher priority packets might be dropped when they

would otherwise get through.

To address this concern, routing could o�er bundling of multicast groups so that they

each use the same route. A multicast routing protocol could accomplish this by listing a

set of groups { called the bundling set { in control messages that build a multicast tree. For

example, when PIM sends a Join message upstream, the message can contain the bundling

set, and routers processing the message can install forwarding entries for all of the groups.

Likewise, when MORF sends a Setup message, it can list the bundling set and install the

alternate path for all the groups.

To request this service, receivers need to notify routing of the bundling set. We may

reasonably expect that an application would enforce a consistent bundling set among all

receivers requesting the service. Without this homogeneity, routing could not construct

a meaningful service from a set of conicting requests. Any router performing bundling

that encountered a conicting bundling set would thus return an error indicating that it

could not provide the requested service.

4.5 Unicast Route Setup

Previous work has studied the e�cacy of using explicit routing to support unicast real-time

applications [Bre95]. One way to use explicit routes to provide alternate paths or pinned

routes is to embed the explicit route in an application's packets [EZL+96, HLFT94, DH95].

Assuming the route will be inserted by the sender's nearest router, no modi�cations to

applications will be needed. However, because many routers currently delay processing

of explicitly routed packets, this mechanism may not be applicable to applications with

strict delay requirements.

An alternative is for the sender's nearest router to insert a label in the application's

packets rather than an explicit route. This label would reference an alternate path or

pinned route that is installed using MORF.3 Because unicast applications involve only one

receiver, the setup latency will only be 1 trip.

3The label could in fact be a multicast group address, reducing unicast alternate path routing to a
special case of multicast.

32

a) Failed links cause Pin to use longer route b) Links recover, causing Pin to loop, 2-3-4-3

4

3

2

1

S

3

2

1

4

SPin message

pinned router

Figure 4.9: Pin Message Loop

4.6 Pitfalls of Pinning Using Hop-by-Hop Routing

An alternative design for route pinning is to use hop-by-hop routing rather than explicit

routes. With this design, a leaf router initiates route pinning by sending a Pin message

upstream. This message does not carry an explicit route, but instead follows the currently-

installed route toward the root of the multicast tree. Each router processing the message

pins the child link over which it arrived and then queries its routing table for the next hop

toward the root. It then pins the parent link toward the next hop router and forwards the

message to the next hop. The Pin message stops when it reaches the root or a node that

has already been pinned. This section discusses the pitfalls of this approach.

4.6.1 Preventing Loops

The route a Pin message follows may change before the route is completely pinned. If

this happens, the Pin message may loop back on itself. Looping becomes even more likely

if several routers send Pins at the same time because the messages can form loops by

merging into each other.

Figure 4.9 shows an example of a single Pin message may loop back on itself. Two

links have failed, causing routing to adjust the multicast tree to that shown in Figure 4.9a.

Router R1 begins pinning its current route and sends a Pin message toward the root of

the tree. By the time the Pin reaches router 4, the failed links have recovered and the

multicast tree has changed changed. Router 4 forwards the Pin Request along this new

path, forming a routing loop, shown in Figure 4.9b.

To prevent such loops from forming, we can add a status ag to each node on the

multicast tree. When a router on an adaptive branch receives a Pin, it sets the ag

to \pending", signifying that pinning not yet been established (Figure 4.10a). If the

request reaches the root, routing sends a Connect message downstream to set the ag

33

a) Pin sets status
to pending

S

1

2

3 S1

2

3

a) Pin sets status
to connected

c) Pin detects loop

S

1 2 3

4

Pin message

pending router

pinned router

Figure 4.10: Connecting a Pinned Branch

to \connected", con�rming that the branch has been added to the tree (Figure 4.10b).

Likewise, if the request reaches a connected portion of the tree, routing sends the Connect

downstream from that point. However, if a Pin reaches a pending branch, it may have

looped back on itself (Figure 4.10c). Routing must reject the request and send a Teardown

message downstream to remove the branch and any associated state. Upon receiving

a Teardown message, the router that originated the Pin should then back-o� before re-

sending it.

4.6.2 Comparison to Explicit Routing

The hop-by-hop route pinning protocol, as outlined above, is less robust than MORF or

the other explicit route setup mechanisms. If protocol state is lost but the router with the

lost state is still operational, then MORF can rebuild the lost state and still prevent loops.

In contrast, the hop-by-hop route pinning protocol can form a loop in this situation. Thus,

it can pay a large penalty for not detecting a failure and recovering properly and needs

additional mechanism.

Consider a time t0 when pinning state upstream of node n is lost. Node n and all of

the nodes downstream of n have the status ag set to \connected." This means that if n

re-sends the Pin message, and the message reaches some connected node downstream of

itself, it can form a loop, the same as in Figure 4.9. As can be seen from this example,

setting the status ag to \connected" means that node is connected to the root of the tree.

That condition is violated when state is lost and is di�cult to rectify.

A hop-by-hop route pinning protocol is thus more amenable to a hard state approach,

where separate messages are used to maintain a pinned branch once it is established.

Figure 4.11 shows how such a protocol would work when state is lost. Pin and Connect

messages have established the pinned portion of a multicast tree shown in Figure 4.11a.

34

a) Refresh detects failure b) Teardown unpins branch

S

Refresh
pinned router

S

Teardown

Teardown

Teardown

Figure 4.11: Separate Refresh Message

Receiver R periodically sends a Refresh message to keep this state alive. Suppose that R

sends a Refresh after a pinned router fails. When the Refresh reaches a router without

pinning state (or a router that is pinning on a di�erent branch of the tree), it detects a

failure (Figure 4.11b). The router sends a Teardown both upstream and downstream to

unpin the branch (Figure 4.11c). In order for this solution to work, the Pin and Connect

messages must carry a unique branch identi�er to reference the branch they are pinning.

The Refresh carries this identi�er so that it can detect when the branch has failed.

We have written a prototype route pinning protocol using this latter approach and

integrated it into the DVMRP multicast routing protocol [WPD88]. The prototype was

successful in demonstrating that route pinning can be added to a multicast routing pro-

tocol, even one that uses a ood-and-prune mechanism. However, the protocol proved

di�cult to implement because of the complicated state machines and numerous message

types needed for the hard state approach.

35

Chapter 5

Interdomain Route Construction Heuristics

Given a scalable interdomain multicast route setup protocol, such as MORF, the important

issue we must address is whether we can construct useful alternate paths at a reasonable

cost. Due to the scaling problems inherent in distributing global topology information

at the interdomain level of the network, we propose that a route construction agent use

heuristics to partially explore the interdomain topology and �nd routes.

We have developed several low-cost heuristics that do not require changes to routing

protocols, thus allowing incremental deployment at the edges of the network. To determine

their e�ectiveness in �nding alternate paths, we have conducted a simulation study over

various types of random topologies. For the purposes of our simulations, we have con-

centrated on validating our approach by trying to �nd routes around a single overloaded

interdomain-level link.

5.1 Approach

Our approach relies on route construction agents to serve local receivers (Figure 5.1a).

When a receiver needs an alternate path, its local agent uses heuristics to �nd a route

around any bottlenecks. If the local agent is unable to �nd an alternate path, it may

contact an agent near the sender for a route (Figure 5.1b).

The agents do not have full topology information; they instead build a partial map of

the topology to �nd alternate paths. We have focused on methods for gathering topological

information that is available with existing routing protocols.

36

a) Route construction agents find alternate
paths around bottlenecks for local receivers

b) Agent near receiver queries agent near sender
when necessary

Backbone

Sender

Receivers

Route
Construction Agent

Backbone

Sender

Figure 5.1: Route Construction Agents Serve Local Receivers

We have developed the following algorithm for exploring paths:

1. An agent explores the current path from itself to a small set of Initial Nodes in the

network. These nodes may be randomly chosen or may consist of all the nodes within

n hops. The agent initializes its map with these paths.

2. When the route setup protocol requests an alternate path from the agent, the request

identi�es a multicast tree (a group and a sender or core) and a bottleneck link. The

agent probes the multicast tree for the requesting receiver's current path to the

sender, adds this information to its map, and marks the bottleneck link.

3. The agent then runs a Dijkstra computation over its current map to �nd an alternate

path around the bottleneck link. If one is found, it returns this path to the route

setup protocol.

4. If a path is not found, the agent augments its map by exploring the current path

from some other node in its map { a \third party" { to the sender. Third parties are

chosen from the Initial Nodes in order of their proximity to the receiver until one is

found that has a route around the bottleneck link. Any links explored during this

process are added to the partial map. If no alternate path is found, then the agent

may optionally contact an agent that serves the sender of the multicast tree.1

The variable parameters in this algorithm are the method by which nodes are selected

to initialize the agent's map { either random or within n hops { and the option to query

1To �nd a route around multiple bottlenecks, the agent should re-run the Dijkstra computation if all
third parties have been exhausted. This is necessary because collectively all of the third party explorations
may succeed even if individually none of them do.

37

Table 5.1: Overhead Bounds for Route Construction Heuristics

Heuristic Overhead Bound

N-Hop c(c� 1)N�1

N-Hop+Sender 2c(c� 1)N�1

M-Random M

M-Random+Sender 2M
N-Hop+M-Random M + c(c� 1)N�1

N-Hop+M-Random+Sender 2M + 2c(c� 1)N�1

another agent near the sender of the tree when a route cannot be found locally. Combining

the variations of these parameters yields the following set of heuristics:

N-Hop Initialize using all nodes within N hops,

N-Hop+Sender Same as above, but query the sender's agent if un-

able to �nd a route locally,

M-Random Initialize using M random nodes,

M-Random+Sender Same as above, but query the sender's agent if un-

able to �nd a route locally,

N-Hop+M-Random Initialize using all nodes within N hops and M ran-

dom nodes (not including any nodes within N hops),

N-Hop+M-Random+Sender Same as above, but query the sender's agent if un-

able to �nd a route locally.

We can bound the overhead of each of the above heuristics in terms of the number

of third-party queries performed for a single alternate path search. Table 5.1 lists these

bounds in terms of c, the maximum degree of connectivity of the network; N, the number

of hops explored initially; and M, the number of random nodes explored initially. In the

algorithm given above, third-party queries are limited to the set of Initial Nodes, thus

overhead is bounded by the size of this set. In the case of the N-Hop heuristic, this bound

is c(c� 1)N�1; deriving the bounds for the other heuristics is straightforward. By keeping

N small (i.e. 1 or 2 hops), we can limit the overhead of all of the heuristics to a small

number of third-party queries.

38

a) 100-node flat random network b) 100-node transit-stub network

Figure 5.2: Flat Random and Transit-Stub Networks

5.2 Simulation Model

We have implemented the route construction algorithm given above within the LBNL net-

work simulator [MFF] to evaluate e�ectiveness in �nding alternate paths. Our primary goal

is to characterize the performance of the heuristics according to a varied set of topologies.

We are also interested in measuring the path length of alternate paths computed using the

heuristics; they should not be many hops longer than the shortest path.

5.2.1 Topology

We generated various large topologies using the Georgia Tech ITM topology generator

[ZCB96, CZ]. We used one at random network of 100 nodes (Figure 5.2a), using the

Doar-Leslie edge-connection method [DL93] to generate edges that mostly connect nodes

\near" each other. The average degree of connectivity for this network is 4.26. We also

created transit-stub topologies, which consist of a backbone network and connected stub

networks, with each sub-network generated randomly. Figure 5.2b shows a 100-node transit

stub network we used, having an average degree of connectivity of 3.74. To determine how

well our heuristics scale to larger topologies, we also generated three 1000-node transit-stub

networks.

5.2.2 Workload

Given a single topology, the performance of the route construction heuristics will depend

on the locations of the agent, the sender, and the bottleneck link. We have designed a

workload that characterizes the e�ectiveness of a heuristic for a given topology by varying

the placement of these three entities. For each topology, a simulation begins by randomly

choosing a sender and a receiver. It then iterates through each of the links between the

39

sender and receiver, assuming in turn that each link is the bottleneck link. The route

construction agent, which we assume is co-located with the receiver, then tries to �nd an

alternate path around that link.

The output of a single simulation, using a single sender-receiver pair and for a single

link, is a binary indication of whether an alternate path was found, the shortest path

distance, the alternate path distance (if any is found), and the number of third-party

queries needed for the computation. If the heuristic is based on M-Random, then we

repeat each simulation 100 times to compute averages for the relevant numbers. Other

heuristics only need to be run one time. For each of the generated topologies, we ran

simulations for 100 sender-receiver pairs.

5.3 Simulation Results

We ran a battery of simulations using the above workload for each of the route construction

heuristics. We then evaluated each of the heuristics based on success rate and path length.

5.3.1 Success Rate

To determine the e�ectiveness of the heuristics, we compute the success rate by dividing

the number of successes versus the number of attempts. We do not count attempts where

there is no alternate path available, i.e. where even an algorithm with full knowledge of

the topology will not �nd an alternate path. It is important to note that our experiments

have underestimated the success rate because a given route server is �nding alternate paths

to only a single sender. In practice, a route server may handle requests for routes to a

large number of senders, and any single request may bene�t from routes learned for other

requests. This will particularly be true when �nding routes around local bottlenecks.

Table 5.2 shows the success rate of some of the route construction heuristics for a

100-node at random network. For the at random network, the 1-Hop and 1-Random

heuristics are able to �nd an alternate path 77% and 68% of the time, respectively. Any

combination of these heuristics with each other or with querying the sender is generally

e�ective over 90% of the time.

Although the average success rate for the 1-Hop and 1-Random heuristics is similar,

the distribution of the success rate among various sender-receiver pairs is quite di�erent.

Figure 5.3 shows a histogram of the success rate for these two heuristics. For these his-

tograms, we group the alternate path attempts of each sender-receiver pair and calculate

the overall success rate of each pair. Based on these histograms, querying local routers

40

Table 5.2: Success Rate of Heuristics on 100-node Flat Random Network

Heuristic Average Success Rate

1-Hop 0.77
1-Hop+Sender 0.93
1-Random 0.68
1-Random+Sender 0.88
1-Hop+1-Random 0.90
1-Hop+1-Random+Sender 0.98
2-Hop 0.97
2-Hop+Sender 1.00

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

g
e

o
f

S
en

d
er

/R
ec

ei
v
er

 P
ai

rs

Percentage of Successful Alternate Path Requests

1-Hop Heuristic

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

g
e

o
f

S
en

d
er

/R
ec

ei
v
er

 P
ai

rs

Percentage of Successful Alternate Path Requests

1-Random Heuristic

Figure 5.3: Histogram of Success Rate on 100-Node Flat Random Network

will always be helpful for some sender-receiver pairs and will never help for others. On the

contrary, querying a single random router will always help to �nd some alternate paths in

a at random network.

While the histograms are useful for determining the distribution of a single heuristic,

graphing the cumulative distribution of the sender-receiver paired success rates is useful for

comparing many di�erent heuristics. For ease in reading these graphs, we have converted

the cumulative distribution function Fx(a) = P (x <= a) into a diminutive distribution

function (DDF) Fx(a) = P (x >= a). Thus, for a given point on the graph, the y value

represents the percentage of sender-receiver pairs whose success rate is greater than or

equal to the x value. For example, Figure 5.4a shows that, for the 1-Hop heuristic, 75%

of the sender-receiver pairs �nd an alternate path 50% of the time, and 66% always �nd

an alternate path. This �gure also shows that, for the 1-Random heuristic, all of the pairs

41

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

g
e

o
f

S
en

d
er

-R
ec

ei
v
er

 P
ai

rs

Sender-Receiver Paired Alternate Path Success Rate

100-node Flat Random Network

1-Hop
1-Random

1-Hop+1-Random
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

g
e

o
f

S
en

d
er

-R
ec

ei
v
er

 P
ai

rs

Sender-Receiver Paired Alternate Path Success Rate

100-node Flat Random Network

1-Hop
1-Hop+Sender

1-Hop+1-Random+Sender
2-Hop

a) Adding 1-Hop and 1-Random b) Expanding from 1-Hop to 2-Hop

Figure 5.4: DDF of Success Rate on 100-Node Flat Random Network

are successful at least 32% of the time, but only 3% have a success rate higher than 90%.

The 1-Hop+1-Random heuristic combines the potential for high success of 1-Hop with the

lower bound of 1-Random.

Because 1-Hop has such a high potential success rate for a sender-receiver pair, we are

interested in the value of combining it with other heuristics. Figure 5.4b compares the

e�ectiveness of adding 1-Random and a query to the Sender to 1-Hop, versus expanding

1-Hop to 2-Hop. Adding just a query to the Sender to 1-Hop increases the percentage

of pairs that always �nd an alternate path from 66% to 91%. Adding 1-Random to this

combination raises the lower bound on success rate from 0 to 44%. While 2-Hop still has

a lower bound of 0%, only 3% of the pairs fall in this category. Almost all of the other

pairs always �nd an alternate path.

While many of the heuristics perform well on the at random network, they all perform

substantially worse on the 100-node transit-stub topology. Table 5.3 shows the success rate

of the same heuristics run over the transit-stub network, along with the di�erence between

this rate and that for the at random network.

In particular, the 1-Random heuristic �nds an alternate path only 7% of the time,

compared to 68% for the at random network. The reason for this decline can be seen by

by examining the 100-node transit stub topology in Figure 5.2b. Nearly all of the nodes

(96 out of 100) are located in one of the stub networks, each of which has an average of

8 nodes. Thus when the simulation randomly chooses a sender and a receiver, most likely

they will be located within two di�erent stubs. Then, when the agent explores the path

42

Table 5.3: Success Rate of Heuristics on 100-node Transit-Stub Network

Heuristic Average Success Rate Decline From Flat Random

1-Hop 0.35 0.42
1-Hop+Sender 0.68 0.25
1-Random 0.07 0.61
1-Random+Sender 0.15 0.73
1-Hop+1-Random 0.41 0.49
1-Hop+1-Random+Sender 0.74 0.24
2-Hop 0.41 0.56
2-Hop+Sender 0.77 0.23

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n

ta
g

e
o

f
S

en
d

er
-R

ec
ei

v
er

 P
ai

rs

Sender-Receiver Paired Alternate Path Success Rate

100-node Flat Random Network

1-Hop
2-Hop

1-Hop+Sender
2-Hop+Sender

Figure 5.5: DDF of Success Rate on 100-Node Transit-Stub Network

to another random node, it is likely to choose a node that is in yet a third stub. With this

map, the agent will not explore any part of the sender and receiver's stub networks except

for the shortest paths through them. Thus the only times the agent is likely to �nd an

alternate path will be the rare occasions when the third party is within the same stub as

the sender or receiver or when the bottleneck is in the backbone.

The N-Hop+Sender heuristic, on the other hand, is better able to �nd alternate paths

around local bottlenecks, either within the vicinity of the receiver or near the sender.

Thus, this heuristic is much more successful on the transit-stub network than those using

random nodes. Figure 5.5 demonstrates the e�ectiveness of querying the Sender in this

topology, showing the DDF for 1-Hop and 2-Hop both with and without a query to the

sender. Clearly the bene�t of querying the sender far outweighs the bene�t of adding an

extra hop to the heuristic. Likewise, increasing the number of hops has more impact when

43

Table 5.4: Generation Parameters For Transit-Stub Networks

Network Number Number Transit Stubs/ Stub
Name Nodes Transits Size Transit Size

T100 100 1 4 3 8
T1000-1 1000 1 40 3 8
T1000-2 1000 10 4 3 8
T1000-3 1000 1 4 3 83

the heuristic also queries the sender, since both the sender and receiver are expanding the

radius of their search. To further con�rm the suitability of N-Hop+Sender for �nding local

bottlenecks, we re-analyzed the data for this topology considering only bottlenecks within

a stub. In this scenario, the success rates of 1-Hop+Sender and 2-Hop+Sender rise to 85%

and 93%, respectively.

Our simulations on 100 nodes thus con�rm the following results:

� Topology a�ects the performance of the heuristics.

� Querying local nodes helps �nd alternate paths around local bottlenecks.

� Querying the sender always helps to �nd alternate paths, particularly for local bot-

tlenecks near the sender.

We believe that �nding routes around local bottlenecks is an important case because we

expect the backbone of the network to be well-engineered, whereas a connecting domain

may experience temporary overload.

To observe how well these heuristics scale to larger networks, we repeated our simula-

tions using three 1000-node transit-stub networks. We generated each of these networks

by building on the 100-node transit stub topology and making a di�erent modi�cation for

each of the three networks. Table 5.4 lists the generation parameters for all of the transit-

stub networks, which have an average degree of connectivity of 3.74, 4.35, 3.60, and 4.45

respectively. For network T1000-1, we speci�ed a larger transit network, resulting in a

larger, highly-connected backbone and more stub networks (each node in the backbone

retains the same number of average stub networks). For network T1000-2, we speci�ed

more transit networks, resulting in a larger, hierarchical backbone and likewise more stubs.

Finally, for network T1000-3, we speci�ed larger stubs, which retains a very small back-

bone and the same number of stubs. To keep the node degree low for these stubs, we used

the Doar-Leslie edge connection method.

44

Table 5.5: Success Rate of Heuristics on 1000-node Transit-Stub Networks

Average Success Rate
Heuristic T100 T1000-1 T1000-2 T1000-3

1-Hop+Sender 0.68 0.60 0.46 0.76
2-Hop+Sender 0.77 0.73 0.59 0.86
1-Hop+1-Random+Sender 0.74 0.90 0.81 0.80

1-Hop+Sender, Stubs 0.85 0.87 0.88 0.87
2-Hop+Sender, Stubs 0.93 0.97 0.97 0.99

Table 5.5 shows the success rate of some of the heuristics run over these larger topologies

as compared with the 100-node network. Because the 1-Hop+Sender and 2-Hop+Sender

heuristics �nd alternate paths around local bottlenecks, they perform best on network

T1000-3, in which the size of the stubs dominate the network. Likewise, these same

heuristics do not perform as well when the number of transit networks is increased in

network T1000-2. These two heuristics continue to �nd alternate paths around local

bottlenecks, either within a stub or a transit network, but do not �nd alternate paths

around distant bottlenecks when the connection between networks is hierarchical. On the

other hand, when the backbone consists of a large, at transit network, as with network

T1000-1, these heuristics can also �nd alternate paths within the backbone. The last two

lines of the table emphasize the ability of the N-Hop+Sender heuristics to �nd routes

around local bottlenecks. If overall performance on a variety of hierarchical networks is

a consideration, then the 1-Hop+1-Random+Sender heuristic, by combining local queries

with random queries, is able to consistently �nd routes around both local and distant

bottlenecks.

5.3.2 Path Length

We compared the length of each alternate path found by the heuristics to the shortest

path used in each case. By taking the di�erence in path length we can determine the

number of \extra" hops in the alternate paths found by the heuristics. We compare this

average to the average alternate path length found by algorithm using global knowledge

of the topology, which will always �nd the shortest available alternate path.

Table 5.6 lists the average number of extra hops for some of the heuristics on each of

the topologies. We have grouped the data into several categories for ease in comparing the

results. The �rst group lists the average number of extra hops for the global algorithm.

Compared to this, the 1-Hop heuristic generally has comparable paths, with 1-Random

45

Table 5.6: Path Length of Alternate Paths

Average Extra Hops per Alternate Path
Heuristic F100 T100 T1000-1 T1000-2 T1000-3

Global 0.67 0.69 0.62 0.79 0.63

1-Hop 0.84 0.79 0.80 0.85 0.86
1-Random 2.43 1.07 1.14 2.31 2.18

1-Hop+Sender 0.82 0.82 0.80 0.70 0.73
2-Hop+Sender 1.02 0.86 0.83 0.80 0.87
1-Hop+1-Random+Sender 1.15 0.83 0.91 1.57 0.82

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

o
f

A
lt

er
n
at

e
P

at
h
s

Number of Extra Hops

1-Hop Heuristic

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

P
er

ce
n
ta

g
e

o
f

A
lt

er
n
at

e
P

at
h
s

Number of Extra Hops

1-Random Heuristic

Figure 5.6: Histogram of Extra Hops per Alternate Path on 100-Node Flat Network

having much longer paths. The last group of data includes the three heuristics whose

success rates are the highest.

These results indicate that the N-Hop heuristics often �nd an alternate path whose

length is equal to that of the shortest path. The heuristics that use random selection of

third parties, however, will often �nd paths that are much longer. These heuristics may

select a third party that is distant from both the sender and receiver, so it is possible

for them to �nd a path that has 2d extra hops, where d is the diameter of the network.

Figure 5.6 shows a histogram of the extra hops per alternate path for the 1-Hop and

1-Random heuristics on the at random network. While the longest path for the 1-Hop

heuristic is 2 hops longer than the shortest path, the 1-Random heuristic �nds paths that

are as much as 7 hops longer. In many cases, a route server using 1-Random can do extra

exploration of third parties (i.e. by using as a third party every node between itself and the

46

randomly-chosen node) and �nd shorter paths. However, this could increase the overhead

of the exploration beyond the bounds derived in Section 5.1.

From the data shown above it is also clear that the topologies we generated have

multiple equal-cost paths to many destinations. If this also holds true for real-world

networks, then a distance-vector unicast routing protocol like BGP [RL94] could pass

through some equal-cost paths to route servers, simplifying route computation. If these

paths are used frequently, then it will be cheaper to distribute them rather than compute

them individually at each route server. A route server would still need to use the route

querying heuristics described within this paper to �nd less-frequently used and slightly

longer alternate paths when other paths are not adequate. This division of labor between

pre-computed paths and on-demand computed paths has been proposed earlier as a part

of the uni�ed routing architecture [ERH92].

47

Chapter 6

Routing Support for RSVP

As described in Chapter 3, one of the possible uses of alternate path routing and route

pinning is to support a reservation protocol, such as RSVP [ZDE+93]. For example, when

a router receives a reservation failure, one of its possible actions is to ask routing for an

alternate path around that bottleneck. Likewise, when a router determines that it has

successfully reserved a route, it may request route pinning.

The purpose of this chapter is to describe other mechanisms that routing may use to

support RSVP. We examine the tradeo�s of these support services in terms of the utility

they o�er versus the cost of the mechanism. Many of the services explored herein are

equally applicable for any reservation protocol that is receiver-oriented.

When discussing the architecture for alternate path routing and route pinning, we have

been careful to emphasize the separation of the routing and reservation protocols. The

general rule of this division of labor is that routing decides whether to forward packets,

whereas RSVP inuences how they are forwarded. However, the services discussed in this

chapter do not lend themselves to such a clean separation, as they require much more

cooperation between RSVP and routing. Thus, in this chapter we combine routing and

reservation setup whenever it signi�cantly simpli�es the mechanisms required to imple-

ment a particular service. In keeping with the general rule separating the two protocols,

we propose that routing perform this combined signalling whenever a mechanism deter-

mines how a multicast tree is routed. Otherwise, RSVP should incorporate the indicated

functionality.

We begin this chapter by giving a brief overview of RSVP as background for subsequent

discussions. We then describe a number of routing services for supporting RSVP. We

conclude by discussing the tradeo�s of the mechanisms.

48

a) Path message multicasted hop-by-hop
downstream, RSVP-capable routers
intercept and store RSVP parent

b) Resv messages unicasted upstream,
where they are merged by RSVP-capable
routers

<1>

S

R1

54

2 3

1

R2

6

R3 R4

Resv

<S>

<1>

<3><5><4>

<1>

Resv Resv

non-RSVP router

RSVP-capable router

RSVP control messages

<1>

S

R1

54

2 3

1

R2

6

R3 R4

Path

<S>

<1>

<3><5><4>

<1>

Figure 6.1: RSVP Path and Resv Messages

6.1 RSVP Overview

RSVP is designed to scale to very large multicast groups. It uses receiver-oriented reser-

vation requests that merge as they progress up the multicast tree. The reservation for a

single receiver does not need to travel to the root of a multicast tree; rather it travels only

until it reaches a branch of the tree with an equal or larger reservation.

When forwarding reservations upstream toward the root of a multicast tree, RSVP

needs to follow the route that multicast data would travel when sent by the root. To

allow incremental deployment, RSVP must additionally cope with the possibility that

some routers may not support the protocol. RSVP overcomes both of these obstacles by

having an RSVP sender transmit a Path message downstream. The Path message is sent

as a multicast packet that is forwarded normally by non-RSVP routers, but is intercepted

at each RSVP router on the multicast tree for processing. Each intercepting RSVP router

stores state needed to reach the root of the multicast tree, including the parent RSVP

router.

Using this state, RSVP can then forward reservation messages upstream along the

reverse path of the multicast tree. When a receiver wishes to make a reservation, it

transmits a Resv message, which RSVP unicasts to the parent RSVP router. At each hop,

RSVP attempts to make the requested reservation and returns an error to downstream

receivers if the reservation fails. If the Resv meets an already-reserved portion of the

multicast tree, it stops if the reservation in place is larger than or equal to its own.

Otherwise, the Resv message is forwarded to the root of the tree.

49

Figure 6.1 shows an example of RSVP message processing. In Figure 6.1a, routers 2

and 6 are automatically bypassed by the Path message as it is muilticasted hop-hop-by

hop downstream. Note that the Path message is also received by non-RSVP receivers that

subscribe to the multicast group, such as receiver R3. Each router in the �gure is shown

storing the parent RSVP router in the multicast tree. In Figure 6.1b, each RSVP receiver

unicasts a Resv message to its parent RSVP router. These routers in turn unicast the

message upstream toward the root, again bypassing non-RSVP routers. When multiple

reservations are received at router 1, they are merged and a single reservation is forwarded

to the root. Note that more merging would take place at router 2 if it was RSVP-capable.

6.2 Smooth Switching

Because a pinned (alternate) route does not adapt opportunistically, it may at times be

longer than the shortest path. While any router can limit the amount of extra hops

its pinned route uses, the use of paths longer than shortest paths may decrease network

utilization. If alternate routes are commonly used, this may lead to signi�cantly ine�cient

usage of network resources. To alleviate this problem, we may prefer that the architecture

enables all receivers to migrate to the shortest path if adequate resources are available to

support their reservations.

However, changing paths indiscriminately can cause a service disruption for receivers

with a reservation. As with opportunistic routing changes, receivers have no guarantee

that their reservations will be accepted on the shortest path once a switch is made, and

even if they are, they face some period of time when there is no reservation state. To

prevent service disruptions, we may require that the multicast routing protocol not switch

to the shortest path until after a reservation has been established there. Furthermore, the

reservation on the shortest path must be large enough so that it provides the same level

of service as the old path to all a�ected receivers. We call this type of service smooth

switching; receivers switched to the shortest path should experience a smooth transition,

without service interruption.

Thus, with the smooth switching service, the routing and reservation protocols cooper-

ate to migrate receivers from a reserved alternate path to a reserved shortest path. While

the shortest path is being prepared, the reservation protocol keeps a reservation in place

on both paths, but data ows only on the installed multicast tree (Figure 6.2a). When the

transition is made, the shortest path is incorporated into the multicast tree and the old

path is pruned from the tree (Figure 6.2b). At the same time, the shortest path is itself

50

a) Routing and reservation protocols
install new reserved path

b) Routing protocol prunes conflicting
branches of multicast tree

S

R1 R2 R3 R4

S

R1 R2 R3 R4

multicast tree
(reservations and data)
smooth switching path
(reservations only)
prune message

Figure 6.2: Smooth Switching Service

a) Receiver switches to new path,
invalidating caches at routers 4,R1,R2.

b) Merge sent downstream to update
caches

<R1,4,5,3,2,1,S>

<4,5,3,2,1,S>

<R2,4,5,3,2,1,S>

S

R1

54

2 3

1

R2

6

R3 R4

<4,5,2,1,S>

<R1,4,5,2,1,S>

<R2,4,5,2,1,S>

Merge(<5,2,1,S>)

S

R1

54

2 3

1

R2

6

R3 R4

Figure 6.3: Smooth Switching Requires Merge Message

pinned, to prevent any future disruption from opportunistic route changes. Likewise, the

reservation protocol drops its reservation along the old path.

Because smooth switching implies that pinned branches in the multicast tree can be

re-routed, a more complex setup protocol than MORF is needed to perform this service.

When the smooth switching service migrates from an old route to a new one, the ances-

tors cached within the re-routed subtree will become invalid (Figure 6.3a), thus allowing

temporary loops to form. These nodes can either be removed from the tree (similar to a

Failure with MORF) or have their caches updated (similar to a Merge with Merge Down).

While MORF is appropriate for new branches being added to the tree, it can result in

service disruptions when applied to this scenario. In addition, since the nodes with in-

valid caches can already participate in temporary loops, the loop-prevention advantage of

MORF is lost. Using a Merge message updates nodes with corrected caches (Figure 6.3b)

51

while keeping them attached to the tree. Unlike the Merge Down mechanism, however,

the message needs to be sent down the re-routed subtree, rather than on the new branch.

The Smooth Switching protocol also has to incorporate additional complexity to ensure

that the new branch is reserved at an adequate level. The Merge Down mechanism can be

modi�ed for this purpose by adding two additional messages: Standby and Switch. The

Standbymessage travels upstream from a receiver to install and reserve a temporary branch

in the multicast tree. The reservation amount is set so as to provide service to a�ected

receivers that is equal to what they are currently receiving. When making the reservation

on the smooth switching route, routers should coordinate with RSVP so that they can

use any current reservations for the tree, i.e. where the smooth switching route overlaps

the current route. Once the reservation is in place, a Switch message is sent downstream

to make the temporary branch a permanent branch of the multicast tree. Any conicting

branches of the multicast tree are safely pruned because equivalent reservations on these

branches have already been made on the new branch. It is important to switch the path

on the way downstream, to avoid service disruption if a Switch message is lost between

routers.

To begin smooth switching, a router generates a Standby message that contains the

shortest path route from itself to the root of the multicast tree, along with the combined

reservation of any local receivers. The router gets the shortest path route by querying

its routing tables or probing the network (i.e. with traceroute), and it obtains the needed

reservation objects from RSVP. The router then forwards the Standby message upstream

toward the root of the multicast tree.

Figure 6.4 details the processing of the Standbymessage. Each router along the smooth

switching path temporarily keeps extra state consisting of:

routeStandby smooth switching (Standby) route

parentStandby parent (next hop) of Standby route

childStandby child (previous hop) of Standby route

resv
Standby
parent reservation for parent of Standby route

resv
Standby
child reservation for child of Standby route

Note that separate smooth switching state is kept for each multicast tree, but we omit the

root and group in this notation for readability. Similar nomenclature is used for Setup

Tree state and RSVP state.

52

Procedure Standby(child; root; group; route; resv)
begin

if (9stateStandby)
if (routeStandby 6= route)

send Failure(child; root; group; route; resv; \merge failure")
else

if (: end(route))

send Standby(parentStandby; root; group; route; resvStandbyparent)
endif

endif

return

endif

if (resv rejected on child)
send Failure(child; root; group; route; resv; \reservation failure")
return

endif

if (end(route) _ (upstream(route) = routeSetup ^ resv � resvRSV P
parent))

childRSV P childRSV P + child

resvRSV P
child max(resv; resvRSV P

child)
childSetup childSetup + child

send Switch(child; root; group; route; resv)
return

endif

create timerSetup

childStandby child

parentStandby nexthop(route)
routeStandby route

resv
Standby
parent max(resv; resvRSV P

parent)

resv
Standby

child resv

send Standby(parentStandby; root; group; route; resvStandbyparent)
return

end

Figure 6.4: Standby Message Processing for Smooth Switching Mechanism

53

The �rst thing a router must do when processing a Standby message is prevent the

messages from crossing paths or merging. Several receivers may utilize smooth switching

for the same multicast tree at the same time only if the routes being switched do not

overlap. This simpli�es the smooth switching mechanism. An alternative would be to

allow Standby messages to create a Standby tree in parallel to the multicast tree, and to

use MORF or Merge Down to prevent loops in this tree. If this were the case, then the

largest reservation level would need to be carried upstream whenever a Standby message

merged. Moreover, additional mechanism would be needed whenever a Switch message had

already started to switch over to a new route when a Standby message merged downstream

with a di�erent route or a larger reservation. The mechanism described herein avoids this

complexity.

The next processing step a router takes is to attempt the reservation listed in the

Standby message. When attempting the reservation, the Smooth Switching mechanism

coordinates with RSVP so that it can use any current reservations for the tree, i.e. where

the smooth switching route overlaps the current route. If the reservation succeeds, then

the Standby message is forwarded upstream. As the message travels upstream, it attempts

to reserve the Standby route using the largest reservation of any of the branches that it

is re-routing. This ensures that the reservation level is not downgraded for any of the

receivers that are re-routed. However, during the delay it may take to switch to the new

route, any upgrade of the reservation on the old route may be lost. To avoid this problem,

a node may reject any upgraded reservation requests while a Standby route has not yet

been smoothly switched.

The Standby message stops being forwarded if it reaches the end of its route. The

Standby message may also stop if its route matches what is in place on the Setup Tree

and if its reservation level is less than or equal to the reservation maintained by RSVP. In

either case, the Standby message stops and the router sends a Switch message downstream.

Figure 6.5 details the processing of the Switch message. If the parent for the Standby

route di�ers from that of the Setup Tree, then the router must prune the conicting branch

of the Setup Tree. It must also send a Merge message downstream to all children in the

Setup Tree to prevent loops.

As the Switch message travels downstream, it deletes the smooth switching state. The

routing state is converted to Setup Tree state and the reservation state is relinquished

to RSVP. From this point on, MORF and RSVP assume responsibility for maintaining

their respective state. If a Standby message is lost, the originating router will not receive

a Switch message. If this occurs, then this router may re-transmit the Standby message

54

Procedure Switch(parent; root; group; route)
begin

if (6 9stateStandby)
return

endif

if (route 6= routeStandby)
return

endif

if (parentSetup 6= parentStandby)
send Prune(parentSetup; root; group)
foreach(child 2 childSetup)

send Merge(child; root; group; routeSetup;upstream(routeStandby))
endfor

endif

parentRSVP parentStandby

childRSV P childRSV P + childStandby

resvRSV P
parent resv

Standby
parent

resvRSV P
child resv

Standby
child

routeSetup upstream(routeStandby)
parentSetup parentStandby

childSetup childSetup + childStandby

child childStandby

delete stateStandby

if (start(route))
return

endif

send Switch(child; root; group; route)
end

Figure 6.5: Switch Message Processing for Smooth Switching Mechanism

55

after a period of time. State created by the mechanism will eventually timeout if no

re-transmission is made.

We have described the smooth switching mechanism using combined signalling, since

this reduces the signalling time. This is important for this mechanism, since competing

Standby messages and upgraded RSVP reservations will be blocked during the switching

time. Separating the routing and reservation mechanisms in this function would require

three round-trip times to do the signalling instead of one: one trip to setup the path, one to

make the reservations, and one to switch the path. In addition, combining the mechanisms

makes sense because the routing state created by the mechanism is only needed temporarily

to carry reservations upstream; it is not needed for data. Because smooth switching re-

routes multicast trees, we assume the combined signalling will be provided by the route

setup protocol, with an interface to RSVP to obtain reservations.

One drawback of the mechanism is that receivers are susceptible to a one-upmanship

problem:

1. Assume Router A has reserved a route.

2. Router B overrides the route using smooth switching with an incrementally larger

reservation.

3. Router A retaliates by returning to the original route using smooth switching and

an incrementally larger reservation than B's new one. Etc...

While it is not clear whether there is an incentive for routers to exhibit this behavior,

well-behaved routers could eliminate this problem by only using shortest-path routes in

smooth switching. This is a reasonable restriction since the service is designed to improve

network utilization by reducing path lengths.

6.3 Advance Advertising

Before making a reservation, some applications may prefer to know the end-to-end char-

acteristics of a route. RSVP currently collects advertising information that describes the

service characteristics of the current multicast tree [SS95, BZB+97]. Having this informa-

tion allows the application to determine, before making a reservation, whether the current

route suits its needs. For instance, an interactive application may want to know the la-

tency along the path before deciding if the route could provide the required low-latency

service.

56

While RSVP's current advertising capability is limited to the currently-installed route,

both routing and RSVP may want to use advance advertising to collect information along

routes that are not yet installed. For example, if a receiver's reservation is rejected along

the current path, then either RSVP or a route server may want to determine whether an

alternate path is appropriate (e.g., has low latency) for a receiver before the route setup

protocol installs the path. Similarly, when routing is already using an alternate path,

RSVP or a route server could use this service to probe the shortest path and determine

whether it should initiate smooth switching. Using advance advertising does not a�ect

the forwarding of data. Note that advance advertising does not give dynamic information

about whether a reservation request will be accepted; it only passes on the relatively static

parameters advertised by routers (such as latency).

Within a single multicast group, di�ering receivers may want to obtain advance ad-

vertising over di�ering paths. Some may be trying various alternate paths, while others

may be checking the shortest path. While each node in the tree can use only one path

to the sender, it is not possible to know ahead of time which of the advance advertising

requests will �nd a path RSVP can utilize. Thus, merging advance advertising requests

into a single tree is impractical. Likewise, routing can not install each receiver's route, as

this would result in O(n2) state. Therefore, advance advertising should use combined sig-

nalling, where a single Collect message carries the explicit route being probed and collects

the advertising information while traversing the route. Because advance advertising does

not a�ect the route used by a multicast tree, this combined signalling should be provided

by RSVP. Since RSVP may not be available at each router for processing of the Collect

message, a receiver will �rst need to probe the network to determine which routers along

the target path support RSVP.

While in many cases the node initiating advance advertising will be the receiver or

its last-hop router, this may not always be true. For example, a route server may check

the characteristics of a route as part of its route computation process. The route server

may not even be a part of the route being probed and thus would need to turn on and o�

collection of advertising information (Figure 6.6).

To maintain exibility when collecting advertising information, the Collect message

carries a routing script. In addition to listing the hops in the route and a counter for the

current hop, the routing script contains a bitmask that can turn on and o� the collection

of advertising information. By setting the bitmask in the script, a router can collect ad-

vertising information from any of the hops listed in the route. This functionality is similar

to that of GRE explicit routing [HLFT94]. For instance, the route server in Figure 6.6

57

R

S

route
server

1

2

T
non-RSVP

router

collect advertising info
on shortest path
travel to/from shortest
path

Figure 6.6: Advance Advertising Service

Procedure Collect(root; group; route; adv)
begin

if (end(route))
return

endif

if (bitmaskset(route;myIPaddress))
adv adv + advertising info

endif

send Collect(nexthop(route); root; group; route; adv)
end

Figure 6.7: Advance Advertising Mechanism

would use a routing script with an explicit route of < T;R; 1; 2; S; T > and a collection

bitmask of < 001110 >. This would collect advertising information for tra�c being sent

from S to R from routers 1, 2 and S.

Figure 6.7 details the processing of a Collectmessage. At each hop, the router examines

the bitmask to determine if it should collect advertising information at that hop. If it

should, then it adds this information for the link leading to the previous hop in the route.

After appending any advertisements, the router continues forwarding the message. The

last hop listed in the routing script should be the router that originated the Collectmessage,

so that processing stops where it began.

Any route can be used with advance advertising as long as it is encoded as an explicit

route, listing all the hops that will be traversed. For example, a router may want to

determine which route it would ultimately be using if it tried to join the multicast tree

with a given alternate path. It can use MORF to do this type of probing by carrying a Setup

message from the receiver until it reaches the rest of the Setup Tree, then automatically

generating a Failure message, regardless of whether the route matches. The router can

58

determine which nodes on this route support RSVP, then use advance advertising to

determine resource availability at those nodes.

6.4 Sender Deactivation

RSVP incorporates di�erent reservation styles that determine how a reservation applies

to the senders in a multicast group. The dynamic �lter style1 allows a receiver to make a

reservation for a set of senders, then select which senders use that reservation over time.

The reservation is always kept in place for all senders, regardless of whether their data is

needed. This service is useful for receivers that are limited by cost or by a bottleneck link

to receiving only a few streams at a time. For example, the receiver may want to use a

dynamic �lter reservation to switch among the available speakers in a video conferencing

application. The dynamic �lter style ensures that when the user wants to watch a new

speaker, a reservation will already be in place for the speaker.

The original design of RSVP called for routers to drop the data of the senders that are

not currently selected by downstream receivers. However, the designers soon realized that

this would prevent non-RSVP receivers from getting data they wanted, i.e. an RSVP-

capable receiver could deny non-RSVP receivers from watching a particular sender in a

videoconference. Likewise, routers should not always forward all the data from all of the

senders. In the case where there aren't any receivers that want the data { RSVP-capable

or otherwise { the unneeded data could overburden downstream links.

In keeping with the relative roles of RSVP and routing, some routing mechanism is

thus needed to drop the data of unwatched senders as soon as possible. Pruning the

multicast tree of an unwatched sender is not acceptable, as this would prevent RSVP from

maintaining its reservation for the sender. We suggest that routing can instead use a

similar service called sender deactivation. When a receiver uses this service on a branch

of a multicast tree, the multicast routing protocol deactivates the sender by no longer

forwarding its data over the branch. The multicast routing protocol still retains its own

protocol state so that it can help RSVP to send control messages along the deactivated

branch. This in turn allows RSVP to use the dynamic �lter reservation style while only

forwarding data where it is needed.

The sender deactivation service requires cooperation between hosts, RSVP, and rout-

ing. First, hosts (both RSVP and best-e�ort) need to report to routers their interest in

1This is described in the original paper [ZDE+93], but is not part of the current speci�cation. [BZB+97]

59

a) Hosts indicate sender
preferences

b) Routers deactivate
unwanted senders.

c) Forwarding entries for multicast trees changed,
routers maintain protocol state for RSVP

R2 R3 R4R1

S2 S3S1

R2 R3 R4R1

S2 S3S1
H2

H3 non-RSVP host

RSVP-capable host

control messages

multicast tree for each sender

R1

H3H2H1

S2,S3

S2

S3

Figure 6.8: Sender Deactivation Service

speci�c senders to the multicast group. Extensions to IGMP that provide this functionality

are already being developed [CDT96]. Second, an RSVP router that receives a dynamic

�lter reservation needs to tell routing that it wants to use sender deactivation for that

multicast tree. When all hosts on a link have indicated that they are not interested in

data from a given sender, then the router on that link can deactivate forwarding for that

sender using a simple multicast routing protocol extension.

Figure 6.8 shows how sender deactivation works. In Figure 6.8a, each of the hosts

indicates to router R1 the senders they want to receive data from. In this example, none

of the hosts are interested in sender S1. If RSVP indicates to R1 that it wants to use

sender deactivation, then R1 deactivates forwarding for S1 (Figure 6.8b). Likewise, router

R3 deactivates sender S2 and R4 deactivates both S2 and S3. After these actions, the

multicast trees for each sender are deactivated up to the point where other receivers need

the data (Figure 6.8c). The routers continue to maintain protocol state internally so that

RSVP may forward Path and Resv messages along the trees.

Figure 6.9 details how the multicast routing protocol supports sender deactivation

using two new messages: De-Activate and Re-Activate. When hosts tell a router they

do not want data from a sender, the router sends a De-Activate message upstream. The

De-Activate message operates like a multicast routing prune message, except that at each

hop it leaves routing protocol state in place and only removes state from the forwarding

engine. Later, if hosts want data from the sender, a router can re-install the forwarding

state along the branch by sending a Re-Activate message upstream.

60

Procedure De-Activate(child; sender; group)
begin

if (6 9treeMulticast)
return

endif

if (child 62 childMulticast _ statusMulticast
child = deactivated)

return

endif

if (local receivers interested in sender)
return

endif

statusMulticast
child deactivated

remove child from forwarding entry
if (statusMulticast

parent = deactivated)
return

endif

foreach(c 2 childMulticast)
if (statusMulticast

c = activated)
return

endif

endfor

remove parentMulticast from forwarding entry
statusMulticast

parent deactivated

send De-Activate(parentMulticast; sender; group)
return

end

Procedure Re-Activate(child; sender; group)
begin

if (child 62 childMulticast _ statusMulticast
child = activated)

return

endif

statusMulticast
child activated

add child to forwarding entry
if (statusMulticast

parent = activated)
return

endif

statusMulticast
parent activated

add parentMulticast to forwarding entry
send Re-Activate(parentMulticast; sender; group)
return

end

Figure 6.9: Sender Deactivation Mechanism

61

RSVP

routing
protocol

Route Query/Reply

Figure 6.10: Route Change Noti�cation Service

6.5 Route Change Noti�cation

When RSVP is used over opportunistic routing, it can adapt to routing changes using

periodic refreshes of its Path messages. At each router on the multicast tree where RSVP

processes a Path message, it sends a Route Query to the routing protocol to get the lat-

est routing entry. In response, RSVP receives a Route Reply, listing the children for the

delivery of the Path message. RSVP then sends the Path message to those children (Fig-

ure 6.10). The speed by which RSVP can adapt to routing changes using this mechanism

is limited to the refresh timer period { a default of 30 seconds.

One of the early directions of this dissertation was to develop the Route Query and

Reply interface and then to determine how to improve RSVP's response time to route

changes. Because RSVP also uses Path message refreshes to keep its state alive, using

them to discover route changes overloads their functionality. If RSVP uses a short refresh

timer so that it responds quickly to route changes, then its state maintenance overhead

increases correspondingly. Likewise, lengthening the timer decreases overhead but worsens

adaptivity.

We developed a route change noti�cation service by which routing noti�es RSVP imme-

diately as route changes occur. This frees RSVP from discovering route changes, allowing

it to adjust the refresh timer solely to reduce messaging overhead. RSVP can also use the

route change noti�cation to trigger an immediate refresh of a Path message and adapt to

the new route. Then when normally processing a refresh timer, RSVP can assume the

routing entry it has is still current and does not need to query routing each time.

This service is extremely simple; no new routing messages are required, and the multi-

cast routing protocol needs to maintain only a single bit of information (indicating noti�-

cation is either on or o�) for each routing entry. To use the service, RSVP sets a bit in the

Route Query message indicating that it wants route change noti�cation. It does this at

each hop where it has received a Path message. Then, when a route change occurs, routing

62

sends an unsolicited Route Reply, in addition to what was immediately sent in response

to the Route Query. This Route Reply lists the new set of children when the route has

changed.

Route change noti�cation decreases the recovery time for RSVP after a route change

by up to tr , RSVP's refresh rate. Assume the routing protocol provides route change

noti�cation at time t0. This triggers an RSVP Path message that travels n hops along the

new route with propagation time tp for each hop. Each Path message also incurs tq time

for a route query at each hop, except for the last hop. Once the Path message reaches the

receiver or some downstream reserved portion of the multicast tree, RSVP sends a Resv

message upstream. This also travels n hops with propagation time tp for each hop. Thus

the total time for RSVP to recover its state after a route change is

t = 2n � tp + (n� 1) � tq

Without route change noti�cation, RSVP has to discover route changes by periodically

sending Path messages. The speed with which it �nds route changes depends directly on

its refresh period tr. Thus, without route change noti�cation, the worst-case time for

RSVP to recover its state after a route change is

t0 = 2n � tp + n � tq + tr

Therefore route change noti�cation speeds up RSVP state recovery by at most

�t = t0 � t = tq + tr � tr

Experimentation with a prototype implementation of route change noti�cation has con-

�rmed its e�ectiveness.

6.6 Evaluation

Table 6.1 summarizes the costs of each of the services discussed in this chapter. Of these

services, route change noti�cation has the lowest cost since it only uses local messages

exchanged within a single router between the routing protocol and RSVP. We have im-

plemented this service in the ISI RSVP prototype and in the DVMRP multicast routing

protocol used in the MBone.

Smooth switching is the most costly of all of the mechanisms, as it requires MORF

to send a Merge message down every re-routed subtree. This means that the route setup

protocol may form temporary loops during re-routing, decreasing the e�ectiveness of Match

63

Table 6.1: Mechanism Costs

Service Costs

Smooth MORF must send Merge message on re-routed subtrees,
Switching add additional Standby and Switch messages.

Advance RSVP must add Collect message.
Advertising

Sender Multicast routing protocol must add De-Activate and Re-Activate
Deactivation messages, keep sender-speci�c routing entries.

Hosts and routers must add IGMPv3 extensions.

Route Change Routing protocol must accept local Route Queries,
Noti�cation keep an extra bit for routing entries.

or Fail in preventing loops. The route setup protocol must also add Standby and Switch

messages to coordinate the re-routing. The cost of this mechanism likely outweighs the

utility of being able to switch to shortest paths. Many of the same bene�ts of smooth

switching could be realized by instead limiting the path length of alternate routes as well

as the use of alternate path routing during high load. These techniques have been shown

to improve network utilization in telecommunications networks [KZ89, Aki84] and could

likely be applied to alternate path routing in the Internet as well.

For intradomain routing, however, smooth switching is a viable mechanism for instal-

lation of QoS routes. The mechanistic premise of smooth switching { that a receiver may

re-con�gure the multicast tree used by other receivers { is identical to that of QoS routing.

QoS routing assumes that a receiver with a \larger" QoS requirement than that of other

receivers may re-route those receivers, assuming it can �nd a path that will satisfy all of

them. When group membership is dynamic and receivers wish to independently compute

routes with available resources, the Smooth Switching protocol discussed herein o�ers a

scalable method for receiver-initiated installation of QoS routes, as contrasted with the

sender-oriented mechanisms often proposed in the literature.

Advance advertising is a comparatively low cost service. It requires only an additional

message in RSVP for collecting the advertising information, and it does not create state

in routers. This is a small cost to pay for allowing routers to determine service character-

istics of routes before installing them, provided the frequency with which routers issue the

message is low. Ultimately the adoption of this service depends on whether alternate path

routing is prevalent and whether service characteristics are needed to compute a route for

a receiver.

64

Sender deactivation uses two relatively simple routing messages, but requires sender-

speci�c routing entries, which adds extra protocol state for multicast routing protocols

that use shared trees. In addition, the utility of the service must justify implementation

of enhanced IGMP features. Whether sender deactivation is implemented depends largely

on whether RSVP receivers need the dynamic �lter reservation style. Similar service can

be provided by sequentially installing and removing a set of �xed �lter (or sender-speci�c)

reservations, without the assurance that a reservation for a newly activated sender will be

accepted by the network. Whether this alternative is feasible depends in turn on resource

availability within the network.

65

Chapter 7

Contributions and Future Work

We have designed an architecture and multicast route setup protocol for alternate path

routing and route pinning. These two services are fundamental in the sense that they

provide an alternative to shortest path routing and opportunistic routing, respectively. As

such they are useful for supporting both adaptive, best-e�ort real-time applications as well

as those that use a reservation protocol.

Our design of the MORF multicast route setup protocol is novel in that it is receiver-

oriented and uses explicit routes to prevent looping. Other setup protocols have primarily

used sender-oriented setup mechanisms or required nodes in the multicast tree to know

their downstream neighbors. By avoiding storage or processing requirements that scale

with the number of downstream nodes, MORF is more scalable than its predecessors.

We have contrasted the MORF loop prevention scheme with other methods for detecting

and breaking loops. The MORF scheme may result in a slightly longer setup delay, but

this delay is of lesser importance when establishing an alternate path because the use of

such a path implies a failure of some type has already occurred. We have also compared

our route pinning design to the alternative of following hop-by-hop the currently-installed

route. This latter method has been used recently for a unicast route pinning protocol

[GKH97] and the authors have contemplated extending it to multicast. Our work has

illustrated the pitfalls of using this design for receiver-oriented multicast.

Our simulation study has veri�ed our approach to constructing alternate paths, namely

that routers near the members of a multicast group can �nd paths without global distri-

bution of the topology. We have identi�ed several techniques with a high success rate for

�nding paths. In addition, all of the techniques we simulated �nd paths that are compa-

rable in length to the shortest path. Combined with limits on path length imposed by the

route construction agent, these heuristics allow routers to exploit the redundancy of large

networks. We have also demonstrated that the topology model used for our simulations

66

can have a large impact on the results obtained, further con�rming the work of Zegura et

al. on topology generation [ZCB96, ZCD].

We have made the �rst known attempt to design extended routing services for RSVP.

While the idea of smooth switching has been discussed for several years, we have iden-

ti�ed its mechanistic costs within the MORF framework. The overall complexity of the

mechanism is high and we do not foresee it being implemented at the interdomain level.

In contrast, we have found that advance advertising requires no additional state within

routers and can be implemented within RSVP using a simple collection script. We have

also identi�ed the costs of supporting RSVP's dynamic �lter reservation style. We have

tested and implemented route change noti�cation, and it is currently deployed in the

MBone.

Should the Internet engineering community decide to adopt MORF, further work will

be needed to completely specify it and test it. Our design includes extensions for robust-

ness, multi-access subnets, and bundling. One of the key decisions to be made is whether

fast teardown is needed or the base speci�cation is enough. If adopted, any of these addi-

tional features need to be integrated into the basic setup mechanism, along with methods

for refreshing the state, to form a complete speci�cation. Other setup protocols that use

refresh mechanisms (i.e. PIM and RSVP) use a refresh message to both keep state alive

and capture routing changes. However, use of refreshes for MORF is limited only to keep-

ing state alive; route changes are ignored and route failures result in the installed route

being removed. Additional work is needed to interface MORF with the multicast routing

protocol so that when a pinned route is removed, the multicast routing protocol quickly

re-installs an opportunistic route.

The future use of MORF will also depend on the design of host services and an API

from the host to the routers to request alternate path setup and route pinning. Our

routing and reservation architecture includes a QoS manager to handle service issues for

applications. The QoS manager needs methods for measuring the service supplied to

a user, such as measuring packet delays, monitoring reservation requests, and perhaps

receiving qualitative input from the user. Further work will also be needed to re�ne the

heuristics the QoS manager uses to decide which actions it will take. For example, if

packet loss is high, the QoS manager may choose from many di�erent actions. These may

include making a reservation or asking for an alternate path. For an application using

hierarchically encoded video, the manager may also choose to leave a multicast group for

a high level of encoding. All of these actions are adaptive responses to poor performance,

and it is not clear yet which choice to make in a given situation and how the QoS manager

67

would make that choice. Additional work is also needed to develop an API by which the

QoS manager asks MORF to install an alternate path, as well as provide identify links

that should be avoided (i.e. due to congestion or reservation failure).

Our investigation of route construction has focused on using several heuristics that

do not require extensive modi�cation to the current routing infrastructure. One item of

future work is to design a prototype of a route construction agent and deploy it to �nd

alternate paths. The agent can use the traceroute or mtrace utility to gather its partial

map, pending routing protocol support of remote table lookup. A complete agent design

will need to maintain its partial map of the network, periodically deleting old information

and polling for new nodes. The agent will also need to use an API to communicate with

the QoS manager regarding bottleneck links and reservation failures, as well as updated

status reports when links become uncongested or reservations succeed.

In addition, our study of route construction heuristics has focused on their applicability

to a single sender and receiver. Further study is needed to determine the bene�ts gained

when the costs of route construction are amortized in two di�erent ways. First, the

local topology exploration done by a router will help that router �nd alternate paths

for a number of senders. Second, when one router �nds an alternate path around a

bottleneck, installation of that path will help all group members that are downstream of

the bottleneck. Additional simulations can quantify the amortization gains for these cases,

and deployment of an agent prototype can verify those results in the �eld. The results

will be highly dependent on group distribution, so a simulation study will need to include

diverse characterizations of sender and receiver locations.

While the costs of the smooth switching protocol are likely to be too high for interdo-

main routing, the mechanisms needed are identical to those for installing a QoS route of

higher priority (or larger QoS) than those already in place. Similarly, the advance adver-

tising mechanism may be of limited usefulness if it reports only static link characteristics,

but if it instead is used to collect current resource availability it may also be useful for

QoS routing. One area for future work is to use these two mechanisms to construct a QoS

routing mechanism that does not rely on global distribution of network information. To

determine its bene�ts, one could conduct an exhaustive study of a spectrum of route com-

putation scenarios generated by combining varying amounts of knowledge about resource

availability:

� none,

� local resource availability (i.e. on links within n hops),

68

� partial resource availability (i.e. polled with advance advertising), and

� full resource availability,

with both full maps of the topology and partial maps using the topology exploration

heuristics of this dissertation. A study of these scenarios could examine their relative

tradeo�s of overhead versus route quality and setup delay.

Our study of the sender deactivation mechanism indicates that it has a low overhead

and thus merits more study to determine its utility. One method for doing this would

be to compare the use of the dynamic �lters RSVP style with sender deactivation versus

installing and removing a succession of �xed �lter (or sender-speci�c) reservations. To

get similar functionality as the dynamic �lter style, a receiver would need to make rapid

changes of �xed �lter reservations with a low blocking rate. The success of this approach

will clearly depend on the load of the network. It will also require future work studying

the ability of multicast routing protocols to perform fast joining and leaving of a sender's

multicast tree and likewise the ability of RSVP to provide fast installation and removal

of reservations. Work is already underway within the Internet engineering community to

design a sender-speci�c version of IGMP. Of particular importance are the suppression of

duplicate reports and the tradeo� between having hosts report on those senders they wish

to receive data from versus those they would speci�cally like to exclude.

All of the protocol design in this dissertation has assumed that routing and reserva-

tion protocols manage state on behalf of individual multicast trees. Many in the Internet

community have suggested designing multicast routing and reservation protocols that do

not require per-group state but instead use aggregates of such state, at least within the

backbone of the network. Some researchers have recently suggested a new network design

called di�erentiated services (as opposed to integrated services). With this scheme, ap-

plications mark their packets based on delay preference and/or drop preference, and the

network schedules the packets using class-based queueing [FJ95]. As the applications de-

tect congestion, they adjust the number of packets they assign to each category. Another

possible design is to modify the reservation protocol so that it carries contracts between

institutional entities rather than ow-speci�c reservation requests. The contract could

then be used to govern the aggregated tra�c ow between the entities. Both of these

potential designs need further study, and it is likely that future routers will handle both

best-e�ort and real-time tra�c, as well as aggregated tra�c and tra�c with individual

service commitments.

69

Finally, future work is needed to improve the tools available for large-scale simulations.

For this work, we pushed the limits of currently available network simulators by running

tens of thousands of short simulations on topologies of thousands of nodes. Completing

these simulations required extensive memory and performance pro�ling to optimize the

simulation, often necessitating movement of code from the Tcl interface to the C++ engine.

Developing larger-scale simulations often means making a tradeo� between specifying less

information versus scaling to a larger problem solving environment. To develop such

tools, for both programming and visualization, the network research community may need

to incorporate ideas from the arti�cal intelligence and parallel processing communities.

For example, arti�cial life researchers can study the e�ects of genetic mutations on large

populations or examine group behavior within large communities of animals. Similarly,

the network community needs a simulation environment that allows the user to specify

simple, abstract behaviors and study those behaviors in a large-scale setting.

70

Reference List

[AH93] Gerald R. Ash and BaoSheng D. Huang. \An Analytical Model for Adaptive
Routing Networks". IEEE Transactions on Communications, 41(11), Novem-
ber 1993.

[Aki84] J. M. Akinpelu. \The Overload Performance of Engineered Networks With
Nonhierarchical and Hierarchical Routing". AT&T Bell Laboratories Techni-
cal Journal, 63(7), September 1984.

[AKK81] G. H. Ash, A. H. Kafker, and K. R. Krishnan. \Servicing and Real-Time
Control of Networks with Dynamic Routing". Bell System Technical Journal,
60(8), October 1981.

[Ala94] Cengiz Alaettinoglu. \Scalable Inter-Domain Routing with ToS, Policy and
Topology Resolution". PhD thesis, University of Maryland, 1994.

[Alm92] P. Almquist. \Type of Service in the Internet Protocol Suite". RFC 1349,
July 1992.

[Att81] R. Attar. \A Distributed Adaptive Multi-Path Routing - Consistent and Con-
icting Decision Making". In Fifth Annual Berkeley Workshop on Distributed
Data Management and Computer Networks, February 1981.

[Bal97] A. J. Ballardie. \Core Based Trees (CBT) Multicast Routing Architecture".
work in progress, May 1997.

[BCFG+97] Tom Billhartz, J. Bibb Cain, Ellen Farrey-Goudreau, Doug Fieg, and
Stephen Gordon Batsell. \Performance and Resource Cost Comparisons for
the CBT and PIM Multicast Routing Protocols". IEEE Journal on Selected
Areas in Communications, 15(3), April 1997.

[BCS94] R. Braden, D. Clark, and S. Shenker. \Integrated Services in the Internet
Architecture: an Overview". RFC 1633, June 1994.

[BDG91] Rick Bubenik, John DeHart, and Mike Gaddis. \Multipoint Connection Man-
agement in High Speed Networks". In IEEE INFOCOM, 1991.

[BFC93] A. J. Ballardie, P.F. Francis, and J. Crowcroft. \Core Based Trees". In ACM
SIGCOMM, August 1993.

71

[BFG+95] R. Bettati, D. Ferrari, A. Gupta, W. He�ner, W. Howe, M. Moran, Q. Nguyen,
and R. Yavatkar. \Connection Establishment for Multi-Party Real-Time
Communication". In Fifth International Workshop on Network and Oper-
ating System Support for Digital Audio and Video, April 1995.

[BJR97] A. J. Ballardie, N. Jain, and S. Reeve. \Core Based Trees (CBT version 2)
Multicast Routing: Protocol Speci�cation". work in progress, July 1997.

[BKJ83] Kadaba Barath-Kumar and Je�rey M. Ja�e. \Routing to Multiple Desti-
nations in Computer Networks". IEEE Transactions on Communications,
31(3), March 1983.

[Bre95] Lee Breslau. \Adaptive Source Routing of Real-Time Tra�c in Integrated
Services Networks". PhD thesis, University of Southern California, December
1995.

[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. \Resource ReSerVa-
tion Protocol (RSVP) - Version 1 Functional Speci�cation". work in progress,
March 1997.

[CD92] S. Casner and S. Deering. \First IETF Internet Audiocast". ACM SIG-
COMM Computer Communication Review, 22(3), July 1992.

[CDT96] Brad Cain, Steve Deering, and Ajit Thyagarajan. \Internet Group Manage-
ment Protocol Version 3 (IGMP V.3)". Work in progress, 1996.

[CGS93] Israel Cidon, Inder S. Gopal, and Adrian Segall. \Connection Establishment
in High-Speed Networks". IEEE/ACM Transactions on Networking, 1(4),
August 1993.

[Cho91] C-H. Chow. \On Multicast Path Finding Algorithms". In IEEE INFOCOM,
1991.

[Cla88] David D. Clark. \The Design Philosophy of the DARPA Internet Protocols".
In ACM SIGCOMM, August 1988.

[CZ] Ken Calvert and Ellen Zegura. \Georgia Tech Internetwork Topology Mod-
els". http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html.

[DB95] L. Delgrossi and L. Berger. \Internet Stream Protocol Version 2 (ST2): Pro-
tocol Speci�cation Version ST2+". RFC 1819, August 1995.

[Dee88a] Stephen Deering. \Host Extensions for IP Multicasting". RFC 1054, May
1988.

[Dee88b] Stephen Deering. \Multicast Routing in Internetworks and Extended LANs".
In ACM SIGCOMM, August 1988.

[Dee91] Stephen Deering. \Multicast Routing in a Datagram Internetwork". PhD
thesis, Stanford University, 1991.

72

[DEF+94] Stephen Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ching-Gung
Liu, and Liming Wei. \An Architecture for Wide-Area Multicast Routing".
In ACM SIGCOMM, August 1994.

[DEF+97] Steven Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ahmed
Helmy, and Liming Wei. \Protocol Independent Multicast Version 2, Dense
Mode Speci�cation". work in progress, May 1997.

[DFE+95] S. Deering, B. Fenner, D. Estrin, A. Helmy, D. Farinacci, L. Wei, M. Handley,
V. Jacobson, and D. Thaler. \Hierarchical PIM-SM Architecture for Inter-
Domain Multicast Routing". work in progress, December 1995.

[DH95] S. Deering and R. Hinden. \Internet Protocol, Version 6 (IPv6) Speci�ca-
tion". RFC 1883, December 1995.

[DHHS93] Luca Delgrossi, Ralf Guido Herrtwich, Frank Oliver Ho�mann, and Sibylle
Schaller. \Receiver-Initiated Communication with ST-II". Technical Report
43.9314, IBM European Networking Center, 1993.

[DL93] Matthew Doar and Ian Leslie. \How Bad Is Naive Multicast Routing?". In
IEEE INFOCOM, 1993.

[DT95] Stephen E. Deering and Ajit Thyagarajan. \Hierarchical Distance Vector
Multicast Routing for the MBONE". In ACM SIGCOMM, August 1995.

[EFH+97] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Ja-
cobson, C. Liu, P. Sharma, and L. Wei. \Protocol Independent Multicast -
Sparse Mode (PIM-SM): Protocol Speci�cation". RFC 2117, June 1997.

[ERH92] Deborah Estrin, Yakov Rekhter, and Steve Hotz. \A Scalable Inter-Domain
Routing Architecture". In ACM SIGCOMM, August 1992.

[Eri94] Hans Eriksson. \MBONE: The Multicast Backbone". Communications of
the ACM, 37(8), August 1994.

[ES91] Deborah Estrin and Martha Steenstrup. \Inter Domain Policy Routing:
Overview of Architecture and Protocols". \Communications of the ACM",
21(1), January 1991.

[EZL+96] Deborah Estrin, Daniel Zappala, Tony Li, Yakov Rekhter, and Kannan Varad-
han. \Source Demand Routing: Packet Format and Forwarding Speci�cation
(Version 1)". RFC 1940, May 1996.

[FBZ94] Domenico Ferrari, Anindo Banerjea, and Hui Zhang. \Network support for
multimedia: A Discussion of the Tenet Approach". Computer Networks and
ISDN Systems, 1994.

[FJ95] Sally Floyd and Van Jacobson. \Link-sharing and Resource Management
Models for Packet Networks". IEEE/ACM Transactions on Networking, 3(4),
August 1995.

73

[For79] J. Forgie. \ST - A Proposed Internet Stream Protocol". Internet Experimen-
tal Notes IEN-119, September 1979.

[FS94a] Inc. FORE Systems. \SPANS NNI: Simple Protocol for ATM Network Sig-
nalling (Network-to-Network Interface) Release 3.0". Technical report, FORE
Systems, Inc., 1994.

[FS94b] Inc. FORE Systems. \SPANS UNI: Simple Protocol for ATM Network Sig-
nalling (User-to-Network Interface) Release 3.0". Technical report, FORE
Systems, Inc., 1994.

[GKH97] R. Guerin, S. Kamat, and S. Herzog. \QoS Path Management with RSVP".
work in progress, March 1997.

[GKK88] R. J. Gibbons, F. P. Kelley, and P. B. Key. \Dynamic Alternative Routing
- Modelling and Behavior". In Proceedings of the 12 International Teletra�c
Congress, June 1988.

[GKR97a] R. Guerin, S. Kamat, and E. Rosen. \Extended RSVP-Routing Interface".
work in progress, July 1997.

[GKR97b] R. Guerin, S. Kamat, and E. Rosen. \Setting up Reservations on Explicit
Paths using RSVP". work in progress, July 1997.

[Hed88] C. Hedrick. \Routing Information Protocol". RFC 1058, STD 0034, June
1988.

[Hed89] Charles L. Hedrick. \An Introduction to IGRP". Technical report, The State
University of New Jersey, October 1989.

[HLFT94] S. Hanks, T. Li, D. Farinacci, and P. Traina. \Generic Routing Encapsulation
(GRE)". RFC 1701, October 1994.

[Hot94] Steven Hotz. \Routing Information Organization to Support Scalable Inter-
domain Routing with Heterogeneous Path Requirements". PhD thesis, Uni-
versity of Southern California, 1994.

[HSS91] B. R. Hurley, C. J. R. Seidl, and W. F. Sewell. \A Survey of Dynamic Rout-
ing Methods for Circuit-Switched Tra�c". IEEE Communications Magazine,
25(9), September 1991.

[IDR93] International Standards Organization. \Protocol for the Exchange of Inter-
Domain Routing Information among Intermediate Systems to Support For-
warding of ISO 8473 PDUs", 1993.

[IT94a] ITU-T. \Draft Recommendation Q.2961". In Draft Text for Q.2961, Ne-
gotiation/Renegotiation: Tra�c and QoS Parameters. Geneva, Switzerland,
1994.

74

[IT94b] ITU-T. \Draft Recommendation Q.2962". In Draft Text for Q.2962, Negoti-
ation/Renegotiation: Tra�c and QoS Negotiation during Call Establishment.
Geneva, Switzerland, 1994.

[IT94c] ITU-T. \Draft Recommendation Q.2963". In Draft Text for Q.2963, Ne-
gotiation/Renegotiation: Tra�c and QoS Negotiation during Active Phase.
Geneva, Switzerland, 1994.

[IT94d] ITU-T. \Draft Recommendation Q.298x". In Draft Text for Q.298x, Ed-
inburgh TD 152 Rev 1 and 147, Broadband Integrated Services Digital Net-
work (B-ISDN), Digital Subscriber Signalling System No. 2, User Network
Interface Layer 3 Speci�cation for Basic Call/Connection Control. Geneva,
Switzerland 13.-21., June 1994.

[Jac88] Van Jacobson. \Congestion Avoidance and Control". In ACM SIGCOMM,
August 1988.

[KPP92] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. \Multicasting for Multi-
media Applications". In IEEE INFOCOM, 1992.

[KZ89] Atul Khanna and John Zinky. \The Revised ARPANET Routing Metric".
In ACM SIGCOMM, September 1989.

[MFF] Steve McCanne, Sally Floyd, and Kevin Fall. \LBNL Network Simulator".
http://ee.lbl.gov/ns.

[MG90] Debasis Mitra and Richard J. Gibbens. \State-Dependent Routing on Sym-
metric Loss Networks with Trunk Reservations: Analysis, Asymptotics, Op-
timal Design". Technical Report 11212-900703-22, AT&T Bell Laboratories,
July 1990.

[MGH91] Debasis Mitra, Richard J. Gibbens, and B. D. Huang. \Analysis and Opti-
mal Design of Aggregated-Least-Busy-Alternative Routing on Symmetric Loss
Networks with Trunk Reservation". In Proceedings of the 13th International
Teletra�c Congress, June 1991.

[Mil84] D. L. Mills. \Exterior Gateway Protocol for Formal Speci�cation". RFC 904,
April 1984.

[Min91] Steve Minzer. \A Signalling Protocol for Complex Multimedia Services".
IEEE Journal On Selected Areas of Communications, 9(9), December 1991.

[MJV96] Steven McCanne, Van Jacobson, and Martin Vetterli. \Receiver-driven Lay-
ered Multicast". In ACM SIGCOMM, August 1996.

[Moy94a] J. Moy. \Multicast Extensions to OSPF". RFC 1584, March 1994.

[Moy94b] J. Moy. \OSPF Version 2". RFC 1583, March 1994.

[Moy94c] John Moy. \Multicast Routing Extensions for OSPF". Communications of
the ACM, 37(8), August 1994.

75

[MRR95] John M. McQuillan, Ira Richer, and Eric C. Rosen. \An Overview of the
New Routing Algorithm for the ARPANET". In ACM SIGCOMM, January
1995. Originally published in: Proc. Sixth Data Communications Symposium,
November, 1979.

[MS91] Debasis Mitra and Judith Seery. \Comparative Evaluations of Random-
ized and Dynamic Routing Strategies for Circuit-Switched Networks". IEEE
Transactions on Communications, 39(1), January 1991.

[MS94] Danny J. Mitzel and Scott Shenker. \Asymptotic Resource Consumption in
Multicast Reservation Styles". In ACM SIGCOMM, August 1994.

[MS95] Ibrahim Matta and A. Udaya Shankar. \Type-of-Service Routing in Data-
gram Delivery Systems". IEEE Journal on Selected Areas in Communica-
tions, 13(8), October 1995.

[MT92a] Patrick A. Miller and Petre N. Turcu. \Generic Signaling Protocol: Architec-
ture, Model, and Services". IEEE Transactions on Communications, 40(5),
May 1992.

[MT92b] Patrick A. Miller and Petre N. Turcu. \Generic Signaling Protocol: Switch-
ing, Networking and Interworking". IEEE Transactions on Communications,
40(5), May 1992.

[NSC90] Don J. Nelson, Khalid Sayood, and Hao Chang. \An Extended Least-Hop
Distributed Routing Algorithm". IEEE Transactions on Communications,
April 1990.

[PNN96] The ATM Forum: Technical Committee. \Private Network-Network Interface
Speci�cation Version 1.0 (PNNI 1.0)", March 1996.

[Pos81a] J. Postel. \Internet Protocol". RFC 791, September 1981.

[Pos81b] J. Postel. \Transmission Control Protocol". RFC 793, September 1981.

[RGW97] A. Orda R. Guerin and D. Williams. \QoS Routing Mechanisms and OSPF
Extensions". work in progress, March 1997.

[RL94] Y. Rekhter and T. Li. \A Border Gateway Protocol 4 (BGP-4)". RFC 1654,
July 1994.

[SCFJ96] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. \ RTP: A Transport
Protocol for Real-Time Applications". RFC 1889, January 1996.

[Sha92] Nachum Shacham. \Multipoint Communication By Hierarchically Encoded
Data". In IEEE INFOCOM, 1992.

[Shu94] Shirdhar B. Shukla. \Multicast Tree Construction in Network Topologies with
Asymmetric Link Loads". Technical Report NPS-EC-94-012, Department of
Electrical and Computer Engineering, Naval Postgraduate School, September
1994.

76

[SS95] J. Wroclawski S. Shenker. \Network Element Service Speci�cation Tem-
plate". work in progress, November 1995.

[Sti95] Burkhard Stiller. "A Survey of UNI Signalling Systems and Protocols for
ATM Networks". ACM SIGCOMM Computer Communication Review, 25(2),
April 1995.

[TEM97] D. Thaler, D. Estrin, and D. Meyer. \Grand Uni�ed Multicast (GUM): Pro-
tocol Speci�cation". work in progress, July 1997.

[TR96] David G. Thaler and Chinya V. Ravishankar. \Distributed Center-Location
Algorithms: Proposals and Comparisons". In IEEE INFOCOM, 1996. Also
published in IEEE Journal on Selected Areas in Communications, April 1997.

[UNI94] The ATM Forum: Technical Committee. \ATM User-Network Interface
(UNI) Signalling Speci�cation Version 3.1", September 1994.

[UNI96] The ATM Forum: Technical Committee. \ATM User-Network Interface
(UNI) Signalling Speci�cation Version 4.0", July 1996.

[Wax88] Bernard M. Waxman. \Routing of Multipoint Connections". IEEE Journal
on Selected Areas in Communications, 6(9), December 1988.

[WC90] Zheng Wang and Jon Crowcroft. \Shortest Path First with Emergency Exits".
In ACM SIGCOMM, September 1990.

[WE94] Liming Wei and Deborah Estrin. \The Trade-o�s of Multicast Trees and Al-
gorithms". In 1994 International Conference on Computer Communications
Networks, September 1994.

[WPD88] D.Waitzman, C. Partridge, and S. Deering. \Distance Vector Multicast Rout-
ing Protocol". RFC 1075, November 1988.

[ZCB96] Ellen W. Zegura, Ken Calvert, and S. Bhattacharjee. \How to Model an
Internetwork". In IEEE INFOCOM, 1996.

[ZCD] Ellen W. Zegura, Kenneth Calvert, and M. Je� Donahoo. \A Quantitative
Comparison of Graph-based Models for Internet Topology". In IEEE/ACM
Transactions on Networking. accepted for publication.

[ZDE+93] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zap-
pala. \RSVP: A New Resource ReSerVation Protocol". IEEE Network,
September 1993.

[ZSSC96] Z. Zhang, C. Sanchez, B. Salkewicz, and E. Crawley. \Quality of Service
Extensions to OSPF". work in progress, June 1996.

77

